история развития компьютерной техники

Описание:
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:
МАОУСОШ №37 РЕФЕРАТ На тему: «история развития компьютерной техники» Выполнили: Копылов А.М. 8 “В” Хуснутдинов И.Ф. 8 “В” Проверили: Иванова М. Д. Златоуст 2016г.

Содержание:

1.Введение. 3

2.1804: появление перфокарт. 4

3.1835—1900-е: первые программируемые машины.. 5

4.1961: электронные калькуляторы.. 6

5.Появление аналоговых вычислителей в предвоенные годы.. 7

6.Первые электромеханические цифровые компьютеры.. 7

7.В СССР и России. 9


1.Введение

Когда людям надоело вести счёт при помощи загибания пальцев, они изобрели абак.

Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весы, которые стали одним из первых устройств для количественного определения массы.

Принцип эквивалентности широко использовался и в другом простейшем счётном устройстве — абаке, или счётах. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

Сравнительно сложным приспособлением для счёта могли быть чётки, применяемые в практике многих религий. Верующий как на счётах отсчитывал на зёрнах чёток число произнесённых молитв, а при проходе полного круга чёток передвигал на отдельном хвостике особые зёрна-счётчики, означающие число отсчитанных кругов.

С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т. п. Вычисления выполнялись за счёт соединения более 30 бронзовых колёс и нескольких циферблатов; для вычисления лунных фаз использовалась дифференциальная передача, изобретение которой исследователи долгое время относили не ранее чем к XVI веку. Впрочем, с уходом античности навыки создания таких устройств были позабыты; потребовалось около полутора тысяч лет, чтобы люди вновь научились создавать похожие по сложности механизмы.

2.1804: появление перфокарт

Перфокарточная система музыкального автомата

В 1804 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.

В 1832 году Семен Корсаков применил перфорированные карты в конструкции разработанных им «интеллектуальных машин[1]», механических устройств для информационного поиска, являющихся прообразами современных экспертных систем.

В 1838 году Чарльз Бэббидж перешёл от разработки Разностной машины к проектированию более сложной аналитической машины, принципы программирования которой напрямую восходят к перфокартам Жаккара.

В 1890 году Бюро Переписи США использовало перфокарты и механизмы сортировки (табуляторы[2]), разработанные Германом Холлеритом, чтобы обработать поток данных десятилетней переписи, переданный под мандат в соответствии с Конституцией. Компания Холлерита в конечном счёте стала ядром IBM. Эта корпорация развила технологию перфокарт в мощный инструмент для деловой обработки данных и выпустила обширную линию специализированного оборудования для их записи. К 1950 году технология IBM стала вездесущей в промышленности и правительстве. Предупреждение, напечатанное на большинстве карт, «не сворачивать, не скручивать и не рвать», стало девизом послевоенной эры.

Во многих компьютерных решениях перфокарты использовались до (и после) конца 1970-х. Например, студенты инженерных и научных специальностей во многих университетах во всём мире могли отправить их программные команды в локальный компьютерный центр в форме набора карт, одна карта на программную строку, а затем должны были ждать очереди для обработки, компиляции и выполнения программы. Впоследствии, после распечатки любых результатов, отмеченных идентификатором заявителя, они помещались в выпускной лоток вне компьютерного центра. Во многих случаях эти результаты включали в себя исключительно распечатку сообщения об ошибке в синтаксисе программы, требуя другого цикла редактирование — компиляция — исполнение.

3.1835—1900-е: первые программируемые машины

Определяющая особенность «универсального компьютера» — это программируемость, что позволяет компьютеру эмулировать любую другую вычисляющую систему всего лишь заменой сохранённой последовательности инструкций.

В 1835 году Чарльз Бэббидж описал свою аналитическую машину. Это был проект компьютера общего назначения, с применением перфокарт в качестве носителя входных данных и программы, а также парового двигателя в качестве источника энергии. Одной из ключевых идей было использование шестерен для выполнения математических функций.

Часть Разностной машины Бэббиджа, собранная после его смерти сыном из частей, найденных в лаборатории

Его первоначальной идеей было использование перфокарт для машины, вычисляющей и печатающей логарифмические таблицы с большой точностью (то есть для специализированной машины). В дальнейшем эти идеи были развиты до машины общего назначения — его «аналитической машины».

Хотя планы были озвучены, и проект, по всей видимости, был реален или, по крайней мере, проверяем, при создании машины возникли определённые трудности. Бэббидж был человеком, с которым было трудно работать, он спорил с каждым, кто не отдавал дань уважения его идеям. Все части машины должны были создаваться вручную. Небольшие ошибки в каждой детали, для машины, состоящей из тысяч деталей, могли вылиться в значительные отклонения, поэтому при создании деталей требовалась точность, необычная для того времени. В результате проект захлебнулся в разногласиях с исполнителем, создающим детали, и завершился с прекращением государственного финансирования.

Ада Лавлейс, дочь лорда Байрона, перевела и дополнила комментариями труд «Sketch of the Analytical Engine». Её имя часто ассоциируют с именем Бэббиджа. Утверждается также, что она является первым программистом, хотя это утверждение и значение её вклада многими оспаривается.

Реконструкция 2-го варианта Разностной машины — раннего, более ограниченного проекта, действует в Лондонском музее науки с 1991 года. Она работает именно так, как было спроектировано Бэббиджем, лишь с небольшими тривиальными изменениями, и это показывает, что Бэббидж в теории был прав. Для создания необходимых частей музей применил машины с компьютерным управлением, придерживаясь допусков, которые мог достичь слесарь того времени. Некоторые полагают, что технология того времени не позволяла создать детали с требуемой точностью, но это предположение оказалось неверным. Неудача Бэббиджа при конструировании машины в основном приписывается трудностям, не только политическим и финансовым, но и его желанию создать очень изощрённый и сложный компьютер.

По стопам Бэббиджа, хотя и не зная о его более ранних работах, шёл Percy Ludgate, бухгалтер из Дублина (Ирландия). Он независимо спроектировал программируемый механический компьютер, который он описал в работе, изданной в 1909 году.

4.1961: электронные калькуляторы

ANITA Mark VIII, 1961 год

Первым полностью электронным настольным калькулятором был британский ANITA Mark VII, который использовал дисплей на газоразрядных цифровых индикаторах и 177 миниатюрных тиратронов. В июне 1963 года Friden представил EC-130 с четырьмя функциями. Он был полностью на транзисторах, имел 13-цифровое разрешение на 5-дюймовой электронно-лучевой трубке и представлялся фирмой на рынке калькуляторов по цене 2200 $. В модель EC 132 были добавлены функция вычисления квадратного корня и обратные функции. В 1965 году Wang Laboratories произвёл LOCI-2, настольный калькулятор на транзисторах с 10 цифрами, который использовал дисплей на газоразрядных цифровых индикаторах и мог вычислять логарифмы.

В Советском Союзе в довоенное время самым известным и распространённым арифмометром был арифмометр «Феликс», выпускавшийся с 1929 по 1978 год на заводах в Курске (завод «Счетмаш»), Пензе и Москве. Электронно-механические вычислительные машины массово выпускались и широко применялись с середины 50-х годов, а в 1959 был налажен выпуск полностью электронных вычислительных машин (ВМ).

5.Появление аналоговых вычислителей в предвоенные годы

Дифференциальный анализатор, Кембридж, 1938 год

Перед Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали эти и другие физические явления значениями электрического напряжения и тока.

6.Первые электромеханические цифровые компьютеры

Американские разработки

В 1937 году Клод Шеннон показал, что существует взаимнооднозначное соответствие между концепциями булевой логики и некоторыми электронными схемами, которые получили название «логические вентили», которые в настоящее время повсеместно используются в цифровых компьютерах. Работая в МТИ, в своей основной работе он продемонстрировал, что электронные связи и переключатели могут представлять выражение булевой алгебры. Так своей работой A Symbolic Analysis of Relay and Switching Circuits он создал основу для практического проектирования цифровых схем.

В ноябре 1937 года Джорж Стибиц завершил в Bell Labs создание компьютера «Model K» на основе релейных переключателей. В конце 1938 года Bell Labs санкционировала исследования по новой программе, возглавлявшиеся Стибицем. В результате этого 8 января 1940 года был завершён Complex Number Calculator, умевший выполнять вычисления над комплексными числами. 11 сентября 1940 года в Дартмутском колледже на демонстрации в ходе конференции Американского математического общества Стибиц отправлял компьютеру команды удалённо, по телефонной линии с телетайпом. Это был первый случай, когда вычислительное устройство использовалось удалённо. Среди участников конференции и свидетелей демонстрации были Джон фон Нейман, Джон Мокли и Норберт Винер, написавший об увиденном в своих мемуарах.

Компьютер Атанасова—Берри

В 1939 году Джон Атанасов и Клиффорд Берри из Университета штата Айова разработали Atanasoff-Berry Computer (ABC). Это был первый в мире электронный цифровой компьютер. Конструкция насчитывала более 300 электровакуумных ламп, в качестве памяти использовался вращающийся барабан. Несмотря на то, что машина ABC не была программируемой, она была первой, использовавшей электронные лампы в сумматоре. Соизобретатель ENIAC Джон Мокли изучал ABC в июне 1941 года, и между историками существуют споры о степени его влияния на разработку машин, последовавших за ENIAC. ABC был почти забыт до тех пор, пока в центре внимания не оказался иск «Honeywell против Sperry Rand», постановление по которому аннулировало патентна ENIAC (и некоторые другие патенты) из-за того, что, помимо других причин, работа Атанасова была выполнена раньше.

В 1939 году в Endicott laboratories в IBM началась работа над Harvard Mark I. Официально известный как Automatic Sequence Controlled Calculator, Mark I был электромеханическим компьютером общего назначения, созданным с финансированием IBM и при помощи со стороны персонала IBM под руководством гарвардского математика Говарда Айкена. Проект компьютера был создан под влиянием Аналитической машины Ч. Бэббиджа с использованием десятичной арифметики, колёс для хранения данных и поворотных переключателей в дополнение к электромагнитным реле. Машина программировалась с помощью перфоленты и имела несколько вычислительных блоков, работавших параллельно. Более поздние версии имели несколько считывателей с перфоленты, и машина могла переключаться между считывателями в зависимости от состояния. Тем не менее, машина была не совсем Тьюринг-полной. Mark I был перенесён в Гарвардский университет и начал работу в мае 1944 года.

7.В СССР и России 

1940-е

В 1945 году работала первая в СССР аналоговая вычислительная машина. До войны же были начаты исследования и разработки быстродействующих триггеров — основных элементов цифровых ЭВМ.

29 июня 1948 года Председатель Совета Министров СССР И. В. Сталин подписал постановление, в соответствии с которым создавалсяИнститут точной механики и вычислительной техники.

В 1948 году под началом доктора физико-математических наук С. А. Лебедева в Киеве начинаются работы по созданию МЭСМ (малой электронной счётной машины). В октябре 1951 года она вступила в эксплуатацию.

В конце 1948 года сотрудники Энергетического института им. Крижижановского И. С. Брук и Б. И. Рамеев получают авторское свидетельствона ЭВМ с общей шиной, а в 1950—1951 гг. создают её. В этой машине впервые в мире вместо электронных ламп используются полупроводниковые (купроксные) диоды. С 1948 г. Брук вёл работы по электронным ЦВМ и управлению с применением средств вычислительной техники.

В начале 1949 года в Москве на базе завода САМ были созданы СКБ-245 и НИИ Счетмаш. Создаются заводы «Счётмаш» в Курске, Пензе, Кишинёве.

1950-е

В начале 50-х в Алма-Ате была создана лаборатория машинной и вычислительной математики. В конце 1951 г. вступила в эксплуатацию ЭВМ М-1, разработанная в лаборатории Энергетического института АН СССР.

Осенью 1952 года была завершена разработка Большой (или Быстродействующей) электронно-счётной машины — БЭСМ-1 (известна также как БЭСМ Академии НаукБЭСМ АН), построенной на электронных лампах (5000 ламп). Опытная эксплуатация началась с 1952 года.

Советские учёные из ИТМиВТ АН СССР создавали сети компьютерной связи с 1952 года в рамках работ по созданию автоматизированной системы противоракетной обороны (ПРО). Вначале специалисты под руководством Сергея Лебедева создали серию ЭВМ («Диана-I», «Диана-II», М-40, М-20, М-50 и др.) и организовали обмен данных между ними для вычисления траектории противоракеты. Как пишет один из создателей системы Всеволод Бурцев, «в экспериментальном комплексе противоракетной обороны» центральная машина М-40 «осуществляла обмен информацией по пяти дуплексным и асинхронно работающим радиорелейным каналам связи с объектами, находящимися от неё на расстоянии от 100 до 200 километров; общий темп поступления информации через радиорелейные линии превышал 1 МГц». В 1956 году западнее озера Балхаш советскими учёными и военными был создан большой полигон, где разрабатывавшаяся система ПРО, вместе с сетью ЭВМ, проходила испытания. В 1953 в СССР начали серийно выпускать машину «Стрела», в 1954 для нужд Министерства обороны СССР основан первый советский вычислительный центр ВЦ-1 (эксплуатировавший ЭВМ «Стрела»).

С 1956 И. Берг и Ф. Старос возглавляют в Ленинграде лабораторию СЛ-11, которая впоследствии была преобразована в КБ-2. Там они создают первую в СССР настольную ЭВМ УМ-1 и её модификацию УМ-1НХ, за что им присуждена Государственная премия.

В 1957 в серию запустили машину «Урал-1». Всего было выпущено 183 машины.

В 1959 была создана уникальная малая ЭВМ «Се́тунь» на основе троичной логики.

В конце 1950-х разрабатываются принципы параллелизма вычислений (А. И. Китов и др.), на основе которых была построена одна из самых скоростных ЭВМ того времени — М-100 (для военных целей).

1960-е

В июле 1961 года в СССР запустили в серию первую полупроводниковую универсальную управляющую машину «Днепр» (до этого были только специализированные полупроводниковые машины). Ещё до начала серийного выпуска с ней проводились эксперименты по управлению сложными технологическими процессами наметаллургическом заводе имени Дзержинского.

Первыми советскими серийными полупроводниковыми ЭВМ стали «Весна» и «Снег», выпускавшиеся с 1964 по 1972 год.

Первыми в мире серийными ЭВМ на интегральных схемах стали советские ЭВМ «Гном», выпускавшиеся с 1965 года.

В 1966 году создана БЭСМ-6, лучшая отечественная ЭВМ 2-го поколения. На тот момент она была самой быстрой не только в СССР, но и в Европе. В архитектуре БЭСМ-6 впервые был широко использован принцип совмещения выполнения команд (до 14 одноадресных машинных команд могли находиться на разных стадиях выполнения). Механизмы прерывания, защиты памяти и другие новаторские решения позволили использовать БЭСМ-6 в мультипрограммном режиме и режиме разделения времени. ЭВМ имела 128 Кб оперативной памяти на ферритовых сердечниках и внешнюю память на магнитных барабанах и ленте. БЭСМ-6 работала с тактовой частотой 10 МГц и рекордной для того времени производительностью — около 1 млн операций в секунду. Всего было выпущено 355 ЭВМ.

1970-е

1970-е: В начале 70-х — разработка систем серии «Эльбрус». «Эльбрус-2» использовался в ядерных центрах, системе противоракетной обороны и других отраслях «оборонки».

В 1972 году были введены в строй железнодорожная система «комплексной автоматизации билетно-кассовых операций» АСУ «Экспресс» и система резервирования авиабилетов «Сирена», обеспечивавшие передачу и обработку больших массивов информации.

2000-е

2008 год — запущен в работу СКИФ МГУ, суперкомпьютер, собранный на базе решений и оборудования американской фирмы Intel, проект был разработан в Белорусском Государственном Университете (26-е место в рейтинге Топ-500 2012).

Информация о файле
Название файла история развития компьютерной техники от пользователя Гость
Дата добавления 10.5.2020, 19:54
Дата обновления 10.5.2020, 19:54
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 150.93 килобайт (Примерное время скачивания)
Просмотров 454
Скачиваний 55
Оценить файл