Зубчатая передача

Описание:
Достоинства и недостатки зубчатых передач.
Классификация зубчатых передач.
Геометрические параметры зубчатых колес.
Кинематическая точность передачи.
Плавность работы передачи.
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

Департамент внутренней и кадровой политики Белгородской области Областное государственное автономное профессиональное образовательное учреждение «Корочанский сельскохозяйственный техникум»

Реферат

по дисциплине «Техническая механика»

Тема реферата: «Зубчатая передача»

                                                       Работу выполнила обучающаяся группы31-Т

                                                       специальности «Технология производства и          пер                                                 переработки с/х продукции»

                                                       Солдатова Оксана Юрьевна

                                                       Проверил:

                                                       Преподаватель Бакланов Д.А.

Короча 2020


Содержание

Общие сведения. 3

Достоинства и недостатки зубчатых передач. 5

Классификация зубчатых передач. 6

Геометрические параметры зубчатых колес. 10

Кинематическая точность передачи. 12

Плавность работы передачи. 15

Контакт зубьев в передаче. 17

Список использованной литературы.. 19


Общие сведения Механизм, в котором два подвижных звена являются зубчатыми ко­лесами, образующими с неподвижным звеном вращательную или поступатель­ную пару, называют зубчатой передачей (рис. 1). Меньшее из колес передачи принято называть шестерней, а большее – колесом, звено зубчатой передачи, соверша­ющее прямолинейное движение, называют зубчатой рейкой (рис. 1, г). Термин «зубчатое колесо» является общим. При одинаковых размерах колес шестерней называют ведущее зубчатое колесо. Параметры шестерни сопровождаются индексом “1”, а колеса – “2”. Рис. 1. Виды зубчатых передач: а, б, в — цилиндрические зубчатые передачи с внешним зацеплением; г — реечная передача; д — цилиндрическая передача с внутренним зацеп­лением; е — зубчатая винтовая передача; ж, з, и — конические зубчатые передачи; к — ги­поидная передача В большинстве случаев зубчатая передача служит для передачи враща­тельного движения. В некоторых механизмах эту передачу применяют для преобразования вращательного движения в поступательное (или наоборот, см. рис. 1, г). Зубчатые передачи — наиболее распространенный тип передач в совре­менном машиностроении и приборостроении. Их применяют для передачи мощностей от долей (механизм кварцевых наручных часов) до десятков тысяч киловатт (крупные шаровые мельницы, дробилки, обжиговые печи) при окружных скоростях до 150 м/с и передаточных числах до нескольких сотен и даже тысяч, с диаметром колес от долей миллиметра до 6 ми более. Диаметры колес  судовых установок, например, в передачах на гребной винт достигают 6 м. Достоинства и недостатки зубчатых передач Основные достоинства зубчатых передач по сравнению с другими передачами: - технологичность, постоянство передаточного числа; - высокая нагрузочная способность (до N=50000 кВт); - высокий КПД (до 0,97-0,99 для одной пары колес); - малые габаритные размеры по сравнению с другими видами передач при равных условиях; - большая надежность в работе, простота обслуживания; - сравнительно малые нагрузки на валы и опоры. К недостаткам зубчатых передач следует отнести: - невозможность бесступенчатого изменения передаточного числа; - высокие требования к точности изготовления и монтажа; - шум при больших скоростях; плохие амортизирующие свойства; - громоздкость при больших расстояниях между осями ведущего и ве­домого валов; - потребность в специальном оборудовании и инструменте для нареза­ния зубьев; - высокая жесткость, не позволяющая компенсировать динамические нагрузки; - нерациональное использование зубьев – в работе передачи одновременно участвуют обычно не более двух зубьев каждого из зацепляющихся колёс; - зубчатая передача не предохраняет машину от возможных опасных перегрузок. Классификация зубчатых передач Зубчатые передачи и колеса классифицируют по следующим призна­кам (см. рис. 1): - по взаимному расположению осей колес: с параллельными осями (цилиндрические, см. рис. 1, а—д), с пересекающимися осями (ко­нические, см. рис. 1, ж—и), со скрещивающимися осями (винто­вые, см. рис. 1, е, гипоидные, см.рис. 1,к), с преобразованием движения (реечные, см. рис. 1, г); - по расположению зубьев относительно образующих колес: прямозубые (продольная ось зуба параллельна образующей поверх­ности колеса (рис. 1, а)); косозубые (продольная ось зуба направлена под углом к образующей поверхности колеса (рис. 1, б)); шевронные (зуб выполнен в форме двух косозубых колес со встреч­ным наклоном осей зубьев (рис. 1, в)); с круговым зубом (ось зуба выполнена по окружности относительно образующей поверхности колеса); - по направлению косые зубья бывают правые и левые. - шевронные колеса по виду шеврона бывают с непрерывным шевроном (см. рис. 1,в) и имеющие между полушевронами канавку для выхода режущего инструмента. - по конструктивному оформлению: открытые (бескорпусные) и закрытые (корпусные); Конструктивно зубчатые передачи большей частью выполняют закрытыми в общем жестком и герметичном корпусе, что обеспечивает им высокую точность сборки и защиту от загрязнения. Лишь тихоходные передачи (V<3 м/с) с колесами значительных размеров, нередко встроенные в конструкцию машины (например, в механизмах поворота подъемных кранов, столов станков), изготавливают открытыми. - по окружной скорости: тихоходные (до 3 м/с), для средних скоро­стей (3—15 м/с), быстроходные (св. 15 м/с); - по числу ступеней: одно- и многоступенчатые; - по расположению зубьев в передаче и колесах: внешнее (зубья направлены своими вершинами от оси вращения колеса (см. рис. 1, а, б, в)), внутрен­нее (зубья одного из зацепляющихся колес направлены своими вершинами к оси вращения колеса (см. рис. 1, д))и реечное зацепление (одно из колес заменено прямолинейной зуб­чатой рейкой (см. рис. 1, г)); - по форме профиля зуба:эвольвентные - рабочий профиль зуба очерчен по эвольвенте круга (линия описываемая точкой прямой, катящейся без скольжения по окружности); циклоидальные - рабочий профиль зуба очерчен по круговой циклоиде (линия описываемая точкой окружности, катящейся без скольжения по другой окружности); цевочное (разновидность циклоидального) – зубья одного из колес, входящих в зацепление, заменены цилиндрическими пальцами – цевками; с круговым профилем зуба (зацепление Новикова) – рабочие профили зубьев образованы дугами окружности практически одинаковых радиусов. - по относительной подвижности геометрических осей зубчатых колес: с неподвижными осями колес - рядовые передачи; с подвижными осями некоторых колес - планетарные передачи. - по жесткости зубчатого венца колес, входящих в зацепление: с колесами неизменяемой формы (с жестким венцом); включающая колеса с венцом изменяющейся формы (гибким). - по величине передаточного числа: с передаточным числом u ≥ 1 – редуцирующие (редукторы - большинство зубчатых передач); с передаточным числом u < 1 – мультиплицирующие (мультипликаторы). Реализуемое передаточное число может быть постоянным и ступенчато-регулируемым осевым перемещением колес по валу (в коробках скоростей). - по точности зацепления. Стандартом предусмотрено 12 степеней точности. Практически передачи общего машиностроения изготов­ляют от шестой до десятой степени точности. Передачи, изготовлен­ные по шестой степени точности, используют для наиболее ответст­венных случаев. - по назначению различают: силовые передачи, предназначенные для передачи мощности; кинематические передачи, то есть передачи, не передающие значительной мощности, а выполняющие чисто кинематические функции. Из перечисленных выше зубчатых передач наибольшее распростра­нение получили цилиндрические прямозубые и косозубые передачи, как наи­более простые в изготовлении и эксплуатации. Наиболее широкое применение находят редуцирующие зубчатые передачи вращательного движения, в том числе и в многоцелевых гусеничных и колесных машинах (коробки передач, бортовые редукторы, приводы различных устройств). Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния. Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентро­вого расстояния. Прямозубые колёса (около 70%) применяют при невысоких и средних скоростях, когда динамические нагрузки от неточности изготовления невелики, в планетарных, открытых передачах, а также при необходимости осевого перемещения колёс. Косозубые колёса (более 30%) имеют большую плавность хода и применяются для ответственных механизмов при средних и высоких скоростях. Шевронные колёса имеют достоинства косозубых колёс плюс  уравновешенные осевые силы и используются в высоконагруженных передачах. Конические передачи при­меняют только в тех случаях, когда это необходимо по условиям компо­новки машины; винтовые — лишь в специальных случаях. Колёса внутреннего зацепления вращаются в одинаковых направлениях и применяются обычно в планетарных передачах.
Геометрические параметры зубчатых колес

Для обеспечения качественного зацепления и условий для передачи большого усилия создается особая геометрия зубчатого колеса. Она характеризуется следующими особенностями:

1.    Боковые грани на момент работы механизма соприкасаются. Пятно контакта обеспечивается специальной криволинейной формой.

2.    Наибольшее распространение получил эвольвентный профиль.

3.    Создается угол зацепления таким образом, чтобы даже при несущественном смещении не происходило заклинивание механизма. Параметры зубчатых колес указываются на чертежах.

Основным элементом передачи можно считать зубчатые колеса. Их основными параметрами назовем следующие моменты:

1.    Делительная окружность. Она указывается на всех чертежах. Под этим параметром понимают соприкасающиеся окружности, катящиеся одна по другой без скольжения.

2. Шаг расположения зубьев-расстояние между профильными поверхностями соседних зубьев. Этот параметр указывается для всех передач и механизмов в спецификации и на чертежах.

3. Длина делительной окружности или модуль также является важным параметром, который нужно учитывать.

4. Высота делительной головки.

5. Зуб является важным элементом каждого колеса. Он характеризуется довольно большим количеством различных характеристик, среди которых отметим высоту ножки, самого зуба и делительной головки.

6. Диаметр окружности вершин и впадин зубьев.

Некоторые их приведенных выше параметров рассчитываются при проектировании передачи, другие выбираются по табличным данным. Прямозубая передача проще всего в проектировании и изготовлении, но она характеризуется менее привлекательными эксплуатационными характеристиками. Крутящий момент и другие параметры выбираются в зависимости от поставленной задачи при проектировании конструкции.

Кинематическая точность передачи

Для обеспечения кинематической точности предусмотрены нормы, ог­раничивающие кинематическую погрешность передачи и кинематическую погрешность колеса.


Кинематической точностью передачи FК.П.П. называют разность между действительнымj2 и номинальным j3 углами поворота ведомого зубчатого колеса 2 (рис. 2.1.) передачи, выраженную в линейных величинах длиной дуги его делительной окружности, т.е. FК.П.П.=(j2-j3)´r, где r - радиус дели­тельной окружности ведомого колеса; j3=j1´z1/z2; j1 – действительный угол поворота ведущего колеса; z1 и z2 – числа зубьев соответственно ведущего 1 и ведомого 2 колёс. Наибольшая кинематическая погрешность передачи F"ir определяется наибольшей алгебраической разностью значений кинематичес­кой погрешности передачи за полный цикл изменения относи­тельного положения зубчатых колёс.

Кинематической погреш­ностью зубчатого колеса FК.П.П. называют разность между дей­ствительным и номинальным (расчётным) углами поворота зубчатого колеса на его рабочей оси, ведомого точным (измери­тельным) колесом при нормаль­ном взаимном положении осей вращения этих колёс; её выра­жают в линейных величинах дли­ной дуги делительной окружнос­ти (рис. 2.2.). Под рабочей осью понимают ось колеса, вокруг ко­торой оно вращается в передаче. При назначении требований к точности колеса относительно другой оси (например, оси отвер­стия), которая может не совпа­дать с рабочей осью, погреш­ность колеса будет другой, что необходимо учитывать при уста­новлении точности передачи. Все точные требования установлены для колёс, находящихся на рабо­чих осях.

Наибольшая кинематичес­кая погрешность зубчатого колеса F"ir – наибольшая алгебраическая разность значений кинематической погрешности зубчатого колеса в пределах угла jполн полного оборота (см. рис. 2.2.). Эта погрешность ограничивается допус­ком на кинематическую погрешность колеса F"i (значения в стандарте не при­ведены). Допуск на кинематическую погрешность зубчатого колеса F"i сле­дует определять как сумму допуска на накопленную погрешность шага ко­леса Fp в зависимости от степени по нормам кинематической точности и до­пуска на погрешность профиля зуба ff, назначаемого в зависимости от сте­пени точности по нормам плавности. Допускается нормировать кинемати­ческую погрешность колеса на k шагах – F"ikr. Эта погрешность ограничива­ется допуском F"ik.

Если кинематическая погрешность колёс при контроле их на рабочей оси не превышает допускаемых значений и требование селективной сборки не выдвигается, то контроль кинематической точности передачи не обязате­лен. Если контролируемая кинематическая точность передачи соответствует требованиям стандарта, то контроль кинематической точности колёс не обя­зателен.

Плавность работы передачи

Эта характеристика передачи определяется параметрами, погрешности которых многократно (циклически) проявляются за оборот зубчатого колеса и также составляют часть кинематической погрешности. Аналитически или с помощью анализаторов кинематическую погрешность можно представить в виде спектра гармонических составляющих, амплитуда и частота которых зависят от характера составляющих погрешностей. Например, отклонение шага зацепления (основного шага) вызывают колебания кинематической погрешности с зубцовой частотой, равной частоте входа в зацепление зубьев колёс. Циклический характер погрешностей, нарушающих плавность работы передачи, и возможность гармонического анализа дали основание определять и нормировать эти погрешности по спектру кинематической погрешности. Под циклической погрешностью передачи fzk0r и зубчатого колеса fzkr понимают удвоенную амплитуду гармонической составляющей кинематической погрешности соответственно передачи или колеса. Для ограничения циклической погрешности установлены допуски: fzk0 - на циклическую погрешность передачи и fzk - на циклическую погрешность зубчатого колеса. Допуски fzk0 и fzk для любой частоты определяются по формуле Fzk0=fzk=(k-0,6ц+0,13)´Fr, (3.1.)

где кц - частота циклов за оборот зубчатого колеса; Fr - допуск на радиальное биение зубчатого венца той же степени точности, что и fzk.

Анализ формулы (3.1.) показывает, что с увеличением частоты кц допуски fzk0 и fzk уменьшаются. Это подтверждается опытом производства и эксплуатации быстроходных передач. Для ограничения циклической погрешности с частотой повторения, равной частоте хода зубьев в зацепление fzz0r и fzzr, установлены допуски на циклическую погрешность зубцовой частоты в передаче fzz0 и колеса fzz, причём fzz=0,6fzz0.Эти допуски зависят от частоты циклической погрешности кц (равной числу зубьев колёс z), степени точности, коэффициента осевого перекрытия eb и модуля m. Коэффициентом осевого перекрытия косозубой цилиндрической передачи eb называют отношение угла осевого перекрытия зубчатого колеса к угловому шагу. Угол осевого перекрытия jb - это угол поворота зубчатого колеса косозубой цилиндрической передачи, при котором точка контакта зубьев перемещается по линии зуба этого колеса от одного его торца до другого (т.е. угол поворота колеса передачи от положения входа до выхода зубьев из зацепления).

Косозубые передачи со значительным коэффициентом осевого перекрытия eb по сравнению с прямозубыми имеют меньший зубцовый импульс (меньшую амплитуду первой гармонической составляющей), поэтому с увеличением eb допуск fzz0 уменьшается.

Циклическая погрешность зубцовой частоты является главной причиной нарушения плавности зубчатых передач, состоящих из прямозубых колёс.

Циклическая погрешность зубчатого колеса возникает вследствие биения червяка делительной пары станка, биения и перекоса фрезы и т.д. Погрешности станка вызывают также волнистость боковых поверхностей зубьев косозубых колёс и погрешность профиля прямозубых колёс, которые являются главными причинами неравномерного вращения передачи.

Циклические погрешности обычно вызывают повышение шумовых характеристик, причём уровень шумовой мощности увеличивается с увеличением частоты вращения передачи. Чтобы повысить плавность передачи, целесообразно повышать точность зуборезного инструмента и червяка, сопряжённого с делительным колесом станка, а также применять шевингование и зубохонингование колёс.

Контакт зубьев в передаче

Для повышения износостойкости и долговечности зубчатых передач необходимо, чтобы полнота контакта сопряжённых боковых поверхностей зубьев колёс была наибольшей. При неполном и неравномерном прилегании зубьев уменьшается несущая площадь поверхности их контакта, неравномерно распределяются контактные напряжения и смазочный материал, что приводит к интенсивному изнашиванию зубьев. Для обеспечения необходимой полноты контакта зубьев в передаче установлены наименьшие размеры суммарного пятна контакта.

Суммарным пятном контакта называют часть активной боковой поверхности зуба колеса, на которой располагаются следы прилегания зубьев парного колеса (следы надиров или краски) в собранной передаче после вращения под нагрузкой, устанавливаемой конструктором. Пятно контакта (рис. 4.1.) определяется относительными размерами (в процентах): по длине зуба - отношением расстояния а между крайними точками следов прилегания за вычетом разрывов с, превышающих модуль в мм, к длине зуба b, т.е.
[(a-c)/b]´100%; по высоте зуба - отношением средней (по длине зуба) высоты прилегания hm к высоте зуба соответствующей активной боковой поверхности hp, т.е. (hm/hp)´100%.

В ГОСТ 1643-81 введено понятие мгновенное пятно контакта, определяемое после поворота колеса собранной передачи на полный оборот при лёгком торможении.

Полнота контакта зависит от погрешностей установки заготовки на станке (её торцевого биения), неточности станка (непараллельности направления хода фрезерного суппорта оси вращения стола и его перекоса), а для косозубых колёс также от погрешностей винта подачи зуборезного станка. Притирка и приработка зубьев сопряжённых колёс улучшают их контакт.

На полноту контакта влияют погрешности формы зубьев и погрешности их взаимного расположения в передаче.

При соответствии суммарного или мгновенного пятна контакта требованиям стандарта контроль по другим показателям, определяющим контакт зубьев в передаче, не является необходимым. Допускается


определять пятна контакта с помощью измерительного колеса.

Список использованной литературы

https://stankiexpert.ru/tehnologicheskaya-osnastka/zapchasti/zubchataya-peredacha.html

https://www.kazedu.kz/referat/51412

https://www.sites.google.com/site/tehmehprimizt/lekcii/detali-masin/zubcatye-peredaci

Информация о файле
Название файла Зубчатая передача от пользователя гном
Дата добавления 17.5.2020, 17:08
Дата обновления 17.5.2020, 17:08
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 154.08 килобайт (Примерное время скачивания)
Просмотров 673
Скачиваний 83
Оценить файл