УГСХА
Контрольная работа
по дисциплине «Эконометрика»
студента 1 курса
заочного отделения
экономического факультета
специальность 060500
«Финансы и кредит»
Кириллова Юрия Юрьевича
шифр 07045
Ульяновск 2008
Задание 1
Рассчитанные параметры уравнений линейной (I), степенной (II), полулогарифмической (III), обратной (IV), гиперболической парной (V), экспоненциальной (VI) регрессии приведены в таблице 1.
Во всех 6 уравнениях связь умеренная (r ~ 0.5), однако в уравнении IV связь обратная, во всех остальных – прямая. Коэффициент детерминации r² также различается не сильно. Наиболее сильное влияние вариации фактора на вариацию результата в уравнении I, наиболее слабое в уравнении V.
Средний коэффициент эластичности колеблется от 0,1277 в уравнении V до 0,1628 в уравнении III, из чего можно сделать вывод о слабом влиянии прожиточного минимума на размер пенсий.
Средняя ошибка аппроксимации чрезвычайно высока (96%) для третьего уравнения и незначительна (~3%) для остальных пяти.
Fтабл.=4,84 для α=0,05. Неравенство Fтабл. Итак, уравнение линейной регрессии является лучшим
уравнением регрессии, применительно к данной задаче. Оно статистически надежно,
обладает невысокой ошибкой аппроксимации и умеренным коэффициентом корелляции. Для уровня значимости α=0,05 доверительный интервал
прогноза результата, при увеличении прогнозного значения фактора на 10% для
уравнения I 231,44±19,324, для уравнения II 231,52±0,0377, для уравнения III
455,06±19,953, для уравнения IV 231,96±20,594, для уравнения V 231,39±0,0004,
для уравнения VI 231,17±0,0842. Задание 2 Таблица 2. Исходные данные задания 2 (n=25). Для расчета значимости уравнений сначала необходимо найти
стандартизированные коэффициенты регрессии по формуле По этой формуле получаем в первом уравнении β₁=0,6857, β₂=-0,2286, во втором
уравнении β₁=0,7543,
в третьем уравнении β₂=-0,4686.
Из стандартизированных уравнений находим для первого уравнения Для второго уравнения для третьего Для второго и третьего уравнений Δr₁₁=1. Находим Для первого уравнения получаем Далее находим F-критерий Фишера Для первого уравнения Fфакт.=18,906>Fтабл.=3,44, что
подтверждает статистическую значимость уравнения. Для второго уравнения Fфакт.=30,360>Fтабл.=4,28,
что подтверждает статистическую значимость уравнения. Для третьего уравнения
Fфакт.=6,472>Fтабл.=4,28, что подтверждает его статистическую значимость.
Итак, F-критерий Фишера подтверждает значимость всех трех уравнений с
вероятностью 95%. Для оценки значимости коэффициентов регрессии первого
уравнения вычисляем t-критерий Стьюдента где частный F-критерий Получаем Показатели частной корелляции для первого уравнения вычисляются
по формуле Получаем Средние коэффициенты эластичности для линейной регрессии
рассчитываются по формуле Для первого уравнения получаем Задание 3 Исходная система уравнений содержит эндогенные четыре переменные В соответствии с необходимым условием идентификации D+1=H
первое и второе уравнения сверхидентифицируемы (H=2, D=2), третье уравнение
идентифицируемо (H=1, D=0), четвертое уравнение является тождеством и в
проверке не нуждается. Для первого уравнения Для второго уравнения Для третьего уравнения Четвертое уравнение является тождеством и в проверке не
нуждается. Достаточное условие идентификации выполняется для всех
уравнений. Для оценки параметров данной модели применяется
двухшаговый МНК. Приведенная форма модели ~
.
,
, для второго уравнения
, для третьего
. Далее находим Δr и
Δr₁₁.
Для первого уравнения
,
.
,
.
.
, для второго
, для третьего
.
.
,
.
,
. Отсюда
,
. Для α=0,05
. Следовательно, коэффициент
регрессии b₁
является статистически значимым, а коэффициент b₂
таковым не является.
.
,
.
.
,
, для второго уравнения
, для третьего уравнения
.
и две предопределенные
.
, Det A*≠0, rk A=3.
, Det A*≠0, rk A=3.
, Det A*≠0, rk A=3.
~