Жидкие диэлектрики

Описание:
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №23

Работа защищена с оценкой:

Доц., к.т.н.                                                                          
                                Нефёдов В.Г.

должность, уч. степень, звание

подпись, дата

инициалы, фамилия

Реферат на тему «Жидкие диэлектрики»

по дисциплине «Материаловедение»

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ  ГР.                    2520                                                                            Логинов А. О.

                                                                               подпись, дата                инициалы, фамилия

Санкт-Петербург 2016г.

Оглавление

1)    Вводная часть.

а) Понятие о диэлектрике

б) Различия проводников от диэлектриков

в) Физические свойства жидких диэлектриков

      2)  Виды жидких диэлектриков

а) Нефтяные электроизоляционные масла

            б) Синтетические жидкие диэлектрики

            в) Природные смолы

            г) Растительные масла

      3) Роль жидких диэлектриков в современном мире

4) Пробой жидких диэлектриков, пробивное напряжение, и электрическая прочность

1)    Вводная часть.

а) Понятие о диэлектрике

Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Плотность свободных носителей заряда в диэлектрике не превышает 108 шт/см³. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле.

Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию.

К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком.

б) Различия проводников и диэлектриков

Различие между проводниками, диэлектриками и полупроводниками хорошо иллюстрируется с помощью энергетических диаграмм зонной теории твердого тела. Электрон в изолированном атоме может находится лишь на строго определенных дискретных  энергетических уровнях (состояниях). Энергетические уровни отделены друг от друга значениями энергий, которых электрон в данном атоме иметь не может. При образовании кристалла проявляется взаимодействие атомов между собой. В этом случае все энергетические уровни (заполненные электронами и незаполненные) расщепляются, образуется зона энергетических уровней (рис.1). Уровней в зоне столько, сколько атомов в кристаллической решетке.

                                                      (Рис 1.)

Обычно ширина зоны 1 эВ. Электроны могут за счет внешних воздействий  (тепловое, излучение) переходить на более высокие свободные энергетические уровни. Такие электроны, находящиеся внутри частично заполненной энергетической зоны, называются свободными. Если приложить электрическое поле, то изменению энергии свободных электронов соответствует направленное перемещение их в пространстве, т.е. электрический ток.

в) Физические свойства жидких диэлектриков

Диэлектрическая проницаемость – это свойство жидкости. Ее характеристика включает дипольность и поляризируемость молекул. Электронные частицы и ионные элементы являются частью проводимости самих диэлектрических молекул в жидком состоянии. Автоэлектронная эмиссия, ионизация и электролитическая диссоциация молекул влияют на проводимость.

Показатели электрического характера жидких диэлектриков находятся в прямой зависимости от уровня чистоты состава. Засорения приводят к снижению электрической стойкости жидких диэлектриков. Объем ионов также как и число заряженных коллоидов возрастает, что увеличивает показатели проводимости. 

  
Ионизация молекул и присутствие в жидкостях примесей позволяют определить проводимость жидкостей. Водные примеси, микрочастицы и пузырьки являются основными элементами, которые способствуют уменьшению электрической прочности. Очищение жидкостей с диэлектрическим содержанием достигается с помощью:


• дистилляции; 
• адсорбции; 
• частичной кристаллизации; 
• ионного обмена. 

  
Подобный метод уменьшает уровень проводимости электричества и потерь диэлектриков, но также и повышает прочность. Ее значение достаточно велико, поскольку она является технологическим свойством жидкого диэлектрика и электродов. С ее помощью можно привести характеристику способов создания и использования промежутка изоляции. Электропрочность зависит от примесей, определяющих электрическую проводимость, а также от образца электропроводов, продолжительности импульсных потоков. 

2)    Виды жидких диэлектриков

а) Нефтяные электроизоляционные масла

Трансформаторное масло, которым заливают силовые трансформаторы, из всех жидких электроизоляционных материалов находит наибольшее применение в электротехнике. Его назначение двояко : во-первых, масло, заполняя поры в волокнистой изоляции, а также промежутки между проводами обмоток и между обмотками и баком трансформатора, значительно повышает электрическую прочность изоляции; во-вторых, оно улучшает отвод теплоты, выделяемой за счёт потерь в обмотках и сердечнике трансформатора. Лишь некоторые силовые и измерительные трансформаторы выполняются без заливки маслом ( “ сухие трансформаторы ” ). Ещё одна важная область применения трансформаторного масла - масляные выключатели высокого напряжения. В этих аппаратах разрыв электрической дуги между расходящимися контактами выключателя происходит в масле или в находящихся под повышенным давлением газах, выделяемых маслом под действием высокой температуры дуги; это способствует охлаждению канала дуги и быстрому её гашению. Трансформаторное масло применяется также для заливки маслонаполненных вводов, некоторых типов реакторов, реостатов и других электрических аппаратов.

Трансформаторные, а также другие нефтяные (“минеральные ”) электроизоляционные масла получают из нефти посредством её ступенчатой перегонки с выделением на каждой ступени определённой ( по температуре кипения ) фракции и последующей тщательной очистки от химических нестойких примесей в результате обработки серной кислотой, а затем щёлочью, промывки водой и сушки.

Трансформаторное масло - это жидкость от почти бесцветной до тёмно - жёлтого цвета, по химическому составу представляющая собой смесь различных углеводородов. Трансформаторное масло - горючая жидкость. Электрическая прочность масла - величина, чрезвычайно чувствительная к его увлажнению. Незначительная примесь воды в масле резко снижает его электрическую прочность. Это объясняется тем, что воды ( около 80 ) значительно выше, чем масла (чистого масла около 2,2 ). Под действием сил электрического поля капельки эмульгированной в масле воды втягиваются в места, где напряжённость электрического поля особенно велика и где, собственно и начинается развитие пробоя. Ещё более резко понижается электрическая прочность масла, если в нём, кроме воды содержатся волокнистые примеси. Волокна бумаги, хлопчатобумажной пряжи, легко впитывают в себя влагу из масла, причём значительно возрастает их er. Под действием сил поля увлажнённые волокна не только втягиваются в места, где поле сильнее, но и располагаются по направлению силовых линий, что весьма облегчает пробой масла.

Кабельные масла используются в производстве силовых электрических кабелей; Пропитывая бумажную изоляцию этих кабелей, они повышают её электрическую прочность, а также способствуют отводу теплоты потерь. Кабельные масла бывают различных типов. Для пропитки изоляции силовых кабелей на рабочие напряжения до 35 кВ в свинцовых или алюминиевых оболочках ( кабели с вязкой пропиткой ) применяется масло марки КМ-25 с кинематической вязкостью не менее 23 мм2/c при 1000С, температурой застывания не выше минус 100С и температурой вспышки не ниже +2200С. Для увеличения вязкости к этому маслу дополнительно добавляется канифоль или же синтетический загуститель.

В маслонаполненных кабелях используются менее вязкие масла. Так, масло марки МН-4 применяется для маслонаполненных кабелей на напряжения 110-220 кВ, в которых во время эксплуатации с помощью подпитывающих устройств поддерживается избыточное давление 0,3 - 0,4 МПа.

Для маслонаполненных кабелей высокого давления ( до 1,5 МПа ) на напряжения от 110-500 кВ, прокладываемых в стальных трубах, применяется особо тщательно очищенное масло марки С-200.

б) Синтетические жидкие диэлектрики

Нефтяные масла склонны к электрическому старению, т.е. они могут ухудшать свои свойства под действием электрического поля высокой напряжённости. Для пропитки конденсаторов с целью получения повышенной ёмкости в данных габаритных размерах конденсатора желательно иметь полярный жидкий диэлектрик с более высоким, чем у неполярных нефтяных масел, значением er имеются синтетические жидкие диэлектрики, по тем или иным свойствам превосходящие нефтяные электроизоляционные масла. Рассмотрим важнейшие из них.

Хлорированные углеводороды получаются из различных углеводородов путём замены в их молекулах некоторых ( или даже всех ) атомов водорода атомами хлора. Наиболее широкое применение имеют полярные продукты хлорирования дифенила, имеющие общий состав С12Н10-nCLn (n - степень хлорирования от 3 до 6).

Хлорированные дифенилы обладают er , повышенной по сравнению с неполярными нефтяными маслами. По этому замена масел на хлорированные дифенилы при пропитке конденсаторов уменьшает объём конденсатора ( при этой же электрической ёмкости ) почти в 2 раза. Преимуществом хлорированных дифенилов является его не горючесть. Однако хлорированные дифенилы имеют и свои недостатки. Они сильно токсичны, из-за чего применение их для пропитки конденсаторов в некоторых странах запрещено законом. На их электроизоляционные свойства весьма значительно влияют примеси, наличие которых сказывается на потерях сквозной электропроводности при повышенной температуре. Недостатком является также заметное снижение их er и, следовательно ёмкости пропитанных хлорированными дифенилами конденсаторов при пониженных температурах. Хлорированные дифенилы обладают сравнительно высокой вязкостью, что в некоторых случаях вызывает необходимость разбавления их менее вязкими хлорированными углеводородами.

Кремнийорганические жидкости обладают малым tg d, низкой гигроскопичностью и повышенной нагревостойкостью. Для них характерна слабовыраженная зависимость вязкости от температуры. Эти жидкости весьма дорогие.

Фтороорганические жидкости имеют малый tg d , ничтожно малую гигроскопичность и высокую нагревостойкость. Некоторые фтороорганические жидкости могут длительно работать при температуре 2000С и выше. Пары некоторых фтороорганических жидкостей имеют высокую для газообразных диэлектриков электрическую прочность.

Сравнительно дешёвый отечественный материал (октол) представляет собой смесь полимеров изобутилена и его изомеров, имеющих общий состав С4Н8 и получаемых из газообразных продуктов крекинга нефти.

Значение er октола 2,0 - 2,2; tg d ( при 1кГц ) 0,0001; температура застывания минус 120С.

в) Природные смолы

Канифоль - хрупкая смола, получаемая из живицы ( природной смолы сосны ) после отгонки её жидких составных частей ( скипидара ). Канифоль в основном состоит из органических кислот. Канифоль растворима в нефтяных маслах ( особенно при нагреве) и других углеводородов, растительных маслах, спирте, скипидаре и прочие.

Электроизоляционные свойства канифоли : r=1012- 1013 Ом · м; ЕПР= 10 - 15 МВ/м; зависимость er и tg d от температуры характерна для полярных диэлектриков. Температура размягчения канифоли составляет 50 - 700С. На воздухе канифоль постепенно окисляется, при чём температура размягчения её повышается, а растворимость снижается.

Канифоль, растворённая в нефтяных маслах, применяется при изготовлении пропиточных и заливочных кабельных компаундов.

г) Растительные масла

Растительные масла - вязкие жидкости, получаемые из семян различных растений. Из этих масел особенно важны высыхающие масла, способные под воздействием нагрева, освещения, соприкосновения с кислородом воздуха и других факторов переходить в твёрдое состояние. Тонкий слой масла, налитый на поверхность какого-либо материала, высыхает и образует твёрдую, блестящую, прочно пристающую к подложке электроизоляционную плёнку. Высыхание масел является сложным химическим процессом, связанным с поглощением маслом некоторого количества кислорода из воздуха.

Скорость высыхания масел увеличивается с повышением температуры, при освещении, а также в присутствии катализаторов химических реакций высыхания - сиккативов. В качестве сиккативов используют соединения свинца, кальция, кобальта и др.

Отверждённые плёнки высыхающих масел в тяжёлых углеводородах, например в трансформаторном масле, не растворяются даже при нагреве, так что являются практически маслостойкими, но к ароматическим углеводородам, например бензолу, они менее стойки. При нагреве отверждённая плёнка не размягчается. Наиболее распространённые высыхающие масла - льняное и тунговое.

Льняное масло золотисто - жёлтого цвета получается из семян льна. Его плотность 0,93-0,94 Мг/м3, температура застывания - около -200С.

Тунговое (древесное) масло получают из семян тунгового дерева, которое разводится на Дальнем Востоке и на Кавказе. Тунговое масло не является пищевым и даже токсично. Плотность тунгового масла - 94 МГ/м3 , температура застывания - от 0 до минус 50С.

3)    Роль жидких диэлектриков в современном мире

В последние годы исследования механизма ионизации, электрической проводимости

и пробоя жидких диэлектриков получили большое развитие в связи с важной

ролью, которую эти явления играют во многих современных разделах физики,

химии, техники и радиобиологии. Исследования жидких диэлектриков тесно

связаны с физикой плазмы, физикой полупроводников, дозиметрией ионизирующего

излучения, физикой и техникой электрической прочности материалов и т.д.

Исследования механизма ионизации и электрической проводимости жидких

диэлектриков имеют большое значение для так называемой физики здоровья и для

медицины. Результаты этих исследований заполняют большой пробел в наших

знаниях о механизме ионизации в газах и в жидкостях, а в особенности

ионизации тканей и всего живого организма. Знания эти играют в настоящее

время очень большую роль как в радиологии, так и во многих более общих

проблемах, связанных с воздействием ионизирующего излучения на материю.

4)    Пробой жидких диэлектриков, пробивное напряжение, и электрическая прочность

Пробой диэлектрика – это потеря изоляционных свойств материала при его нахождении в электрическом поле. В диэлектрике образуется канал проводимости. При пробое газообразного или жидкого диэлектрика в результате подвижности молекул после снятия напряжения «пробитый» участок восстанавливает свои первоначальные свойства.

Электрическая прочность – это минимальная напряженность однородного электрического поля, при которой происходит пробой диэлектрика.

Eпр = Uпр / d,

(

где Eпр, В/м; Uпр - пробивное напряжение, В; d - толщина диэлектрика, м.

Близкое к однородному поле можно получить на электродах в виде дисков с закругленными краями или в виде шаров при малом расстоянии между ними. При использовании листовых образцов и плоских электродов однородное поле получается лишь в средней части образца между электродами, у краев поле искажается.

Минимальное напряжение Uпр, приложенное к диэлектрику, и приводящее к образованию в нем проводящего канала, называется пробивным напряжением.

Полный пробой — канал проводимости проходит через всю толщу диэлектрика от одного электрода к другому.

Неполный пробой (например, коронный разряд) — канал проводимости не достигает одного из электродов и

Частичный пробой происходит только в газовых или жидкостных включениях (порах) твердой изоляции.

Поверхностный пробой происходит по границе раздела фаз при совместном использовании диэлектриков, находящихся в различных агрегатных состояниях.

Пробой жидких диэлектриков. Теория пробоя жидких диэлектриков не так хорошо разработана, как для газов. В жидких диэлектриках механизм пробоя и пробивное напряжение зависят от чистоты диэлектрика.

Различают три степени чистоты:                   

1) диэлектрики содержат эмульсионную воду и твёрдые механические загрязнения;

2) технически чистые, диэлектрики практически не содержат эмульсионной воды и механических загрязнений;

   3) особо тщательно очищенные, т. е. совершенно не содержат воды и механических загрязнений, а также хорошо дегазированы.

В особо тщательно очищенных жидких диэлектриках возникает только электрическая форма пробоя. Плотность жидкости существенно больше плотности газа, поэтому в них значительно меньше длина свободного пробега электронов (λ), а значит существенно выше пробивная напряжённость.

В электроэнергетике обычно используются технически чистые жидкие диэлектрики, в которых в незначительных количествах возможны примеси. Особенно сильно снижает электрическую прочность жидкого диэлектрика эмульсионная вода, находящаяся в нем даже в небольшом количестве. Пробой увлажнённых жидкостей происходит следующим образом. Капельки эмульсионной воды в электрическом поле поляризуются, втягиваются в пространство между электродами, деформируются и, сливаясь, образуют мостики с малым электрическим сопротивлением, по которым и происходит разряд. Образование мостиков приводит к значительному снижению прочности масла.

Информация о файле
Название файла Жидкие диэлектрики от пользователя Гость
Дата добавления 5.5.2020, 18:14
Дата обновления 5.5.2020, 18:14
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 52.43 килобайт (Примерное время скачивания)
Просмотров 806
Скачиваний 124
Оценить файл