Интересные примеры в метрических пространствах

Описание:
Тип работы: доклад
В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб.
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

Интересные примеры в метрических пространствах

1. В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб. Действительно, если такой куб разбить на кубики с ребром e, то вершины этих кубиков будут образовывать конечную -сеть в исходном кубе, а значит, и подавно, в любом множестве, лежащем внутри этого куба.

Единичная сфера S в пространстве l2 дает нам пример ограниченного, но не вполне ограниченного множества. Рассмотрим в S точки вида:

е1=(1, 0, 0, ..., 0, 0, ...),

е2=(0, 1, 0, ..., 0, 0, ...),

…………………………,

еn=(0, 0, 0, ..., 1, 0, ...),

………………………….

Расстояние между любыми двумя точками еn и ем (n¹m) равно Ö2. Поэтому последовательность {еi} и любая ее подпоследовательность не сходятся. Отсюда в S не может быть конечной e-сети ни при каком e0 задано. Выберем n так, что 1/2n-1

Информация о файле
Название файла Интересные примеры в метрических пространствах от пользователя z3rg
Дата добавления 15.4.2009, 11:36
Дата обновления 15.4.2009, 11:36
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 8.81 килобайт (Примерное время скачивания)
Просмотров 907
Скачиваний 0
Оценить файл