Интеграл помогает доказать неравенство Коши

Описание:
Тип работы: доклад
Доказательство не такое потрясное по оригинальности как доказательства Бора и Гурвица, а любопытно, скорее, простотой используемых средств и ловкостью автора
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

Интеграл помогает доказать неравенство Коши

С. Берколайко

[Решил добавить к уже выложенным доказательствам неравенства между средним арифметическим и средним геометрическим ещё одно. Оно не такое потрясное по оригинальности как доказательства Бора и Гурвица, а любопытно, скорее, простотой используемых средств и ловкостью автора. – E.G.A.]

Пусть a1, a2, ..., an – положительные числа, среди которых есть различные. Тогда выполняется неравенство Коши:

a1 + a2 + ... + an

n

 >

n

Ö

a1 a2 ... an

.

(1)

Обозначим левую часть неравенства Коши через Sn и докажем его в такой форме:

(Sn ) n > a1 a2 ... an .

(2)

Очевидно, не ограничивая общности, можно считать, что для некоторого k такого, что 1 ≤ k ≤ n – 1,

a1 ≤ a2 ≤ ... ≤ ak ≤ Sn ≤ ak+1 ≤ ... ≤ an–1 ≤ an.

(3)

Основой доказательства неравенства (2) будет неравенство

b

b – a

b

Информация о файле
Название файла Интеграл помогает доказать неравенство Коши от пользователя z3rg
Дата добавления 15.4.2009, 8:17
Дата обновления 15.4.2009, 8:17
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 10.89 килобайт (Примерное время скачивания)
Просмотров 913
Скачиваний 0
Оценить файл