ОЧИСТКА И УТИЛИЗАЦИЯ ОТХОДЯЩИХ ГАЗОВ

Описание:
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Уфимский государственный авиационный университет»

РЕФЕРАТ

НА ТЕМУ:

ОЧИСТКА И УТИЛИЗАЦИЯ ОТХОДЯЩИХ ГАЗОВ

Работу выполнил студент группы СЭМС-108

Гумеров Даян Салаватович

Научный руководитель

 Квятковская Адель 

Станиславовна.

Уфа-2016

Содержание

Введение……………………………………………………………………2

1.             Защита атмосферных от промышленных загрязнений.

2.             Загрязнение атмосферы транспортом.

3.             Воздействие вредных газов на здоровье человека и их нормирование.

4.             Методы очистки и обезвреживание газовых выбросов.

4.1. Очистка отходящих газов от пыли.

4.2. Абсорбционные методы очистки газов.

4.3. Адсорбционные методы.

4.4. Каталитические методы.

5.             Методы контроля и приборы для измерения концентраций пыле- и газообразных примесей в атмосфере.

5.1. Контроль концентрации пыли.

5.2. Контроль концентрации газо- и парообразных примесей.

Введение

В связи с повышением требований к экологической чистоте производств все больше внимания уделяется развитию химических методов очистки отходящих газовых потоков. Эти методы сами по себе или в совокупности с основанными на других принципа технологии обеспечивают эффективную производства, снижение энергозатрат и себестоимости.

Устранение нежелательных компонентов в газах с использованием химических методов означает, что в основе процесса лежит химическая реакция и ее роль является преобладающей по сравнению с процессами адсорбции, абсорбции, конденсации или сжигания. В большинстве случаев, однако, технология сочетает в себе несколько операций и достаточно сложно классифицировать метод очистки в соответствии с перечисленными выше физико-химическими методами. Например, метод очистки газа от SO2 с использованием извести или известкового молока не приводится здесь в качестве химического, поскольку определяющей операцией является абсорбция на стадии скруббирования. Из этого примера видно, что определение, данное «химическому» методу очистки, неоднозначно и вводится для удобства изложения и необходимости классификации.

Цель работы – ознакомление с количеством, составов загрязнений атмосферного воздуха различными производствами, возможными путями из отделения и очистки от них воздуха, с метода контроля загрязнений. Овладение навыками экспериментальной очистки атмосферного воздуха различными методами.

1.     Защита атмосферы от промышленных загрязнений (очистка отходящих газов)

Основными источниками загрязнения атмосферного воздуха являются промышленные предприятия, транспорт, тепловые электростанции, животноводческие комплексы. Каждый из этих источников связан с выделением большого количества специфических токсичных веществ, иногда не поддающихся сразу идентификации, хотя номенклатура многотоннажных загрязнений сравнительно мала.

Заводы промышленности строительных материалов выбрасывают пыль, фториды, диоксиды серы и азота. Выхлопные газы автомобилей содержат примерно 200 веществ, в том числе канцерогенные углеводороды и тетраэтилсвинец. Тепловые электростанции выделяют в атмосферу газы, содержащие оксиды серы, азота и углерода, золу, металлы.

Таким образом, с отходящими газами в атмосферу поступают твердые, жидкие, паро- и газообразные неорганические и органические вещества, поэтому по агрегатному состоянию загрязнения подразделяют на твердые, жидкие, газообразные и смешанные.

Отходящие газы промышленности, содержащие взвешенные твердые или жидкие частицы, представляют собой двухфазные системы. Сплошной фазой в системе являются газы, а дисперсной— твердые частицы или капельки жидкости. Такие аэродис-персные системы называют аэрозолями, которые разделяют на пыли, дымы, и туманы. Пыли содержат твердые частицы размером от 5 до 50 мкм, а дымы — от 0,1 до 5 мкм. Туманы состоят из капелек жидкости размером 0,3—5 мкм и образуются в результате конденсации паров или при распылении жидкости в газе.

Организованный промышленный выброс — это выброс, поступающий в атмосферу через специально сооруженные газоходы» воздуховоды, трубы, а неорганизованным выбросом называют промышленный выброс, поступающий в атмосферу в виде ненаправленных потоков газа в результате нарушения герметичности оборудования, отсутствия или неудовлетворительной работы оборудования по отсосу газа в местах загрузки, выгрузки и храпения продукта.

Для снижения загрязнения атмосферы от промышленных выбросов совершенствуют технологические процессы, осуществляют герметизацию технологического оборудования, применяют пневмотранспорт, строят различные очистные сооружения.

Наиболее эффективным направлением снижения выбросов является создание безотходных технологических процессов, предусматривающих, например, внедрение замкнутых газообразных потоков, однако до настоящего времени основным средством предотвращения вредных выбросов остается разработка и внедрение эффективных систем очистки газов. При этом под очисткой газа понимают отделение от газа или превращение в безвредное состояние загрязняющего вещества, поступающего <> промышленного источника.

Для обезвреживания аэрозолей (пылей и туманов) используют сухие, мокрые и электрические методы. Кроме того, аппараты отличаются друг от друга как по конструкции, так и по принципу осаждения взвешенных частиц. В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. В мокрых пылеуловителях осуществляется контакт запыленных газов с жидкостью. При этом осаждение происходит на капли, на поверхность газовых пузырей или на пленку жидкости. В электрофильтрах отделение заряженных частиц аэрозоля происходит на осадительных электродах.

1.    Загрязнение атмосферы транспортом

К числу основных загрязнений окружающей среды относятся выбросы двигателей внутреннего сгорания (ДВС) и газотурбинных двигателей (ГТД). Исследования состава отработанных газов ДВС показывают, что в них содержатся десятков компонентов.

Вещества, ухудшающие качество окружающей среды, называются загрязнителями. Загрязнителями окружающей среды являются любые инородные поступления (материальные, энергетические), не свойственные для данной среды: это могут быть различные вещества, тепловая энергия, электромагнитные колебания, энергия вибраций, звука, радиации, которые поступают в среду в количествах, достаточных для того, чтобы оказать вредное воздействие на биоту.

Поступление в среду различных загрязнителей называется загрязнением природной окружающей среды. Любая деятельность человека сопровождается большим или меньшим загрязнением окружающей среды.

Глобальными источниками загрязнений окружающей природной среды является производственная и бытовая деятельность человека, а также природные явления, приводящие к возникновению чрезвычайных ситуаций.

Важнейшими материальными загрязнителями среды являются отходы производства и побочные продукты (если последние поступают в среду обитания). В предыдущем разделе отходы производства и потребления рассматривались как источники вторичного сырья, но, к сожалению, эти отходы далеко не всегда утилизируются как вторичное сырье. Следовательно, отходы производства и побочные продукты являются основным источником загрязнения среды различными химическими соединениями.

2.    Воздействие вредных газов на здоровье человека и их нормирование

Вредные вещества - вещества, которые при контакте с организмом человека в случае нарушения требований безопасности могут вызвать производственные травмы, профессиональные заболевания или отклоне­ния в состоянии здоровья, обнаруживаемые современными методами как в процессе работы, так и в отдаленные сроки жизни настоящего и пос­ледующих поколений.

Вещества, обладающие способностью в относительно малых коли­чествах нарушать нормальную жизнедеятельность организма и приво­дить к приходящим или стойким патологическим изменениям, называют­ся ядовитыми (токсическими).

Ядовитые вещества хорошо растворяясь в биологических средах попадают в кровь и вызывают нарушение нормальной жизнедеятельности организма человека. По физиологическому воздействию вредные вещества подразделяются на четыре основные группы:

- раздражающие, действующие на поверхностные ткани дыхательного тракта и слизистые оболочки (сернистый газ, хлор, аммиак, серной и азотной кислот, ацетон);

- удушающие, нарушающие процесс усвоения кислорода тканями: (оксид углерода, сероводород, цианистый водород);

- наркотические, действующие как наркотик (азот под давлением, дихлорэтан, ацетилен, бензин);

- соматические, вызывающие нарушения деятельности организма, его отдельных органов и систем (свинец, бензол, олово, фосфор).

Степень и характер нарушений, вызываемых в организме воздействием токсических веществ, зависят от концентрации, продолжительности воздействия, путей проникновения их в организм, температуры окружающей среды, состояния организма и других факторов.

Химические вещества могут проникать в организм человека тремя путями: через органы дыхания, пищеварительный тракт и кожный покров. Наиболее сильное воздействие оказывают яды, проникающие в органы дыхания. Это связано с тем, что всасывание ядов в этом случае происходит очень интенсивно и они сразу же через легкие попадают в кровь, минуя печень.

В пищеварительный тракт токсические вещества поступают путем заглатывания вдыхаемых паров, газов или пыли при курении или во время еды. Яды в этом случае частично обезвреживаются печенью и кислой средой желудка.

Те вещества, которые хорошо растворимы в жирах, могут проникать в организм человека через кожный покров (ароматические и хлорированные углеводороды - бензол, ксилол, четыреххлористый углерод и др.). При таком пути проникновения в организм яды также проникают непосредственно в кровь, минуя печень. Быстрота их проникновения при этом зависит от ряда факторов: состояния кожного покрова, метеорологических условий (особенно температуры), состояния самого организма и его сопротивляемости.

Из организма, яды частично выделяются, а частично откладываются в различных его системах и органах: печени, мышцах, костях вызывая вспышки заболевания.

Отравления, вызываемые промышленными ядами, называются профессиональными отравлениями.

Отравления могут быть острыми и хроническими. Острое наблюдается в случае внезапного проникновения в организм человека значительного количества вредного вещества. Налицо быстро появляются явные признаки заболевания. В производственных условиях такие отравления наблюдаются довольно редко, как правило, в аварийных случаях. Гораздо чаще наблюдаются хронические отравления, которые являются результатом многократного воздействия на организм человека вредных веществ в небольших количествах.

В соответствии с ГОСТ 12.1.007-76 «Вредные вещества» по степени воздействия на организм человека вредные вещества подразделяются на четыре класса опасности:

- вещества чрезвычайно опасные;

- вещества высокоопасные;

- вещества умеренно опасные;

- вещества малоопасные.

Класс опасности вредных веществ устанавливают в зависимости от норм и показателей, указанных в таблице 1.

Таблица 1. Классификация вредных веществ по степени опасности.

NN

п/п

Наименование показателей

Нормы для класса опасности

I

II

III

IV

1

Предельно допустимая концентрация (ПДК) вредных веществ в воздухе рабочей зоны, мг/м3

Менее 0.1

0.1 - 1.0

1.1 - 10.0

Более 10.0

2

Средняя смертельная доза при введении в желудок, мг/кг

Менее 15

15 - 150

151 - 5000

Более 5000

3

Средняя смертельная доза при нанесении на кожу, мг/кг

Менее 100

100 - 500

501 - 2500

Более 2500

4

Средняя смертельная концентрация в воздухе, мг/м3

Менее 500

500 - 5000

5001- 50000

Более 50000

5

Коэффициент возможности ингаляционного отравления (КВИО)

Более 300

300 - 30

29 - 2

Менее 3

6

Зона острого действия

Менее 6.0

6.0 - 18.0

18.1 - 54.0

Более 54

7

Зона хронического действия

Более 10.0

10.0 - 5.0

4.9 - 2.5

Менее 2.5

Отнесение вредного вещества к классу опасности производят по показателю, значение которого соответствует наиболее высокому классу опасности.

Вредное воздействие на организм человека оказывают также и не токсические пыли. Характер воздействия на пыли зависит от ряда факторов: формы пылинок, ее дисперсности, химического состава. Дисперсность играет большую роль при гигиенической оценке пыли. Размер пыльных частиц существенно влияет на длительность пребывания их во взвешенном состоянии в воздухе, глубину проникновения в дыхательные пути, физико-химическую активность и другие свойства. Пыль обладает способностью удерживаться долгое время во взвешенном состоянии. В спокойном воздухе значительно быстро оседают пылинки размером 10 мкм и более. Пылинки размером менее 10 мкм оседают медленно и вместе с вдыхаемым воздухом попадают на слизистую оболочку дыхательных путей и частично оседают там. А пылинки размером до 5 мкм попадают в легкие, Частицы пыли размером менее 0.1 мкм в большей степени удаляются из легких вместе с выдыхаемым воздухом, Более крупные пылинки удаляются медленно и накапливаются в легких, приводя их к поражению.

В развитии патологических изменений в организме человека большое значение имеет как химический состав пыли, так и количество, содержащееся в воздухе. При попадании пыли в легкие развивается заболевание, носящее общее название - пневмокониоз. Сущность данного заболевания заключается в развитии фиброза, то есть в замещении легочной ткани соединительной тканью.

В зависимости от характера вдыхаемой пыли различают следующие виды пневмокониоза: силикоз, вызываемый воздействием пыли, содер­жащей двуокись кремния - SiO2; антракоз - при вдыхании угольных пылей, асбестоз (пыль асбеста); талькоз (пыль талька) и т.п.

Наиболее распространенное и тяжелое заболевание - силикоз. Проявляется он не сразу, а через 5-10, порой через 15 лет работы, связанной с вдыханием пыли кремнезема. Тяжесть заболевания еще усугубляется тем, что оно оказывает влияние на организм в целом (нарушение сердечно-сосудистой системы, центральной нервной системы и др.).

При длительном вдыхании пыли может наблюдаться также поражение верхних дыхательных путей (катар, бронхит, бронхиальная астма). Пыль, оседая на коже и слизистых оболочках глаз, может вызвать их раздражение и воспалительные процессы (экземы и т.п.). При попадании на кожу пылинки могут вызвать закупорку сальных и потовых желез, а следовательно, нарушить нормальную деятельность кожи.

Твердые пылинки с острыми краями могут вызвать травмы глаз, кожи и верхних дыхательных путей.

В целях предотвращения острых отравлений и профессиональных заболеваний содержание токсических веществ и пыли в воздухе рабочих помещений не должно превышать предельно допустимых концентраций (ПДК), установленных ГОСТ 12.1.005-88 ССБТ. «Общие санитарно-гигиени­ческие требования к воздуху рабочей зоны». Ниже (табл.2) приведены ПДК вредных веществ, встречающихся в машиностроении.

Предельно допустимая концентрация (ПДК)вредных веществ в воз­духе рабочей зоны - концентрация, которая при ежедневной (кроме выходных дней) работе в тернии 8 часов или при другой продолжи­тельности, но не более 40 часов в неделю, в течение всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследования в процес­се работы или в отдаленные сроки жизни настоящего и последующих поколений.

3.    Методы очистки и обезвреживание газовых выбросов

Методы очистки газовых выбросов принимают в зависимости от физико-химических свойств загрязняющего вещества, его агрегатного состояния, концентрации в очищаемой среде и др.

При очистке выбросов от газовых загрязнений приходится решать одновременно ряд проблем, связанных с тем, что в выбросах, содержащих вредные пары и газы, находятся также аэрозоли - пыль, сажа; выбросы в ряде случаев нагреты до высоких температур, загрязнения, содержащиеся в них, многокомпонентны, и их необходимо подвергать различным методам очистки, расход выбросов по времени непостоянен, изменяется концентрация в них различных вредных веществ и т.д.

Судя по составам реальных отбросных газов и масштабам загрязнения окружающей среды, разрабатывать устройства пылеочистки без учета газообразных загрязнителей возможно только для вентиляционных выбросов механических цехов. Выбросы всех других производств требуют удаления и дисперсных, и газовых загрязнителей, причем иногда это можно сделать водном очистном устройстве.

Для обезвреживания выбросов по принципу удаления токсичных примесей наряду с физическими используют и химические процессы, посредством которых можно изменять в широких пределах физические свойства примесей (например, превращать исходные газообразные загрязнители в соединения с высокой температурой кипения) с целью облегчения их дальнейшего улавливания.

Для реализации второго принципа обезвреживания - превращения загрязнителей в безвредные вещества - необходимо сочетание химических и физических процессов. С этой целью чаще всего используют процессы термической деструкции и термического окисления. Они применимы для загрязнителей всех агрегатных состояний, но ограничены составом обрабатываемого вещества. Термической обработке с целью обезвреживания могут быть подвергнуты лишь вещества, молекулы которых состоят из атомов углерода, водорода и кислорода. В противном случае установки термообезвреживания переходят в разряд источников загрязнения атмосферы, и нередко крайне опасных.

Классификация средств обезвреживания газообразных загрязнителей заключается в разделении по применяемым процессам. В основном для газоочистки используют средства химической технологии. Поэтому классификация средств обезвреживания выбросов практически совпадает с классификацией процессов и аппаратов химической промышленности, вырабатывающих вредные выбросы как отходы основного производства.

С целью улавливания газообразных примесей применяют процессы конденсации, сорбции (абсорбции и адсорбции), хемосорбции, а превращают загрязнители в безвредные соединения посредством термохимических (термическая деструкция, термическое и термокаталитическое окисление) и химических процессов. Для очистки выбросов от газообразных загрязнителей чаще всего применяют способы абсорбции, адсорбции, каталитической очистки, термообезвреживания и конденсации газовых примесей.

4.1 Очистка отходящих газов от пыли

Для дальнейшего улавливания пыли возможно использование рукавных фильтров или электрофильтров.

Рукавные фильтры обеспечивают очистку пылегазовых смесей через цилиндрические длинные рукава из специальных фильтрованных тканей: при температуре очищаемых газов до 140°С – из лавсана, при температуре от 140 до 300°С –из стеклоткани. Запыленный газовый поток подается в рукава, очищается в результате налипания на стенки рукавов содержащихся в них частиц при прохождении под разрежением или давлением через ткань. Через определенные промежутки времени рукава очищаются (регенерируют) встряхиванием или обратной продувкой воздухом. В некоторых случаях используют оба способа одновременно.

Степень пылеочистки в них достигает 99,9%. Преимуществом рукавных фильтров являются их компактность и низкая стоимость. Они могут работать при большей концентрации пыли (до 300г/м³ ) без снижения степени пылеочистки. Однако применение рукавных фильтров ограничивается из-за низкой стойкости к воздействию высокой температуры, забивания ткани при влажной пыли и более высоких по сравнению с электрофильтрами эксплутационных расходов.

Электрофильтр – наиболее эффективный пылеочистительный аппарат. Принцип очистки газа в нем основан на приобретении взвешенными частицами электрических зарядов под действием электрического поля высокого напряжения (до 105 В).

Частицы пыли, получив от коронирующих электродов отрицательный заряд, притягиваются к осадительным электродам и осаждаются на них. Налипшая на электроды пыль периодически удаляется встряхиванием, собирается в бункера и через шлюзовые затворы поступает в транспортирующее устройство.

При обеспыливании большого количества газов, содержащих пыль с невысоким электрическим сопротивлением, применение электрофильтров более целесообразно, чем рукавных, так как они имеют меньшее аэродинамическое сопротивление и не требуют расхода дефицитных и дорогих тканей.

4.2 Абсорбционные методы очистки газов

Суть абсорбции заключается в поглощении удаляемых компонентов жидкостью. В зависимости от особенностей взаимодействия поглотителей и извлекаемого из газовой смеси компонента абсорбционные методы делятся на физическую и химическую абсорбцию. Для физической абсорбции применяют поглотители: воду, органические растворители, не вступающие в реакцию с извлекаемыми газами. При химической абсорбции извлекаемые компоненты вступают в химическую реакцию с хемосорбентами, в качестве которых используют  растворы минеральных и органических веществ, суспензии и органические жидкости.

Достоинством этих методов являются доступность и дешевизна абсорбентов, простая технологическая схема процесса, низкие капи­тальные и эксплуатационные затраты, возможность очистки газа без предварительного охлаждения и обеспыливания.

Недостатки - невысокая эффективность очистки, недостаточная степень использования известняка, образование отходов в виде шла­ма или загрязненного гипса.

Абсорбционные методы используют для очистки газов от CO, NxOy, SO2,H2S, HCl, CO2.

Известняковые и известковые методы

Очистка от SO2. Абсорбция SO2 сульфитом натрия: Na2SO3 + SO2 + H2O ->2NaHSO3; 2NaHSO3 -> SO2 + H2O + Na2SO3; Вторая стадия – регенерация сульфата натрия – проводится при температуре 130 гр., при этом выделяются газообразный SO2. Охлажденный раствор сульфата натрия снова возвращается на абсорбцию, а SO2 направляется на переработку в серную кислоту.

Аммиачный способ улавливания SO2: SO2 + NH4OH = NH4HSO3; (NH4)2SO3 + SO2 + H2O = 2NH4HSO3; при нагревании бисульфат аммония разлагается: 2NH4HSO3 -> (NH4)2SO3 + SO2 + H2O; высокая степень улавливания SO2. Магнезиальные методы. Диоксид серы поглощается суспензией оксиды-гидроксиды магния. В процессе хемосорбции образуются кристаллогидраты сульфата магния, которые сушат, а затем термически разлагают на SO2 – содержащий газ и оксид магния. Газ перерабатывают в серную кислоту, а оксид магния возвращают в абсорбцию. Реакции в абсорбере: MgO + SO2 = MgSO3; MgSO3 + SO2 + H2O = Mg(HSO3)2; Бисульфат магния нейтрализуется добавкой соответствующего количества свежего оксида магния: Mg(HSO3)2 + MgO = 2MgSO3 + H2O; осадок подвергается термической обработке (800 – 900 гр.); MgSO3 ? MgO + SO2; оксид магния возвращается на абсорбцию, SO2 перерабатывается в серную кислоту или в серу. Фосфатный метод – абсорбция SO2 водным раствором фосфата натрия. Кислотно-каталитический – применение разбавленной H2SO3 в качестве катализаторов. Озоно-каталитический.

3.3.        Адсорбционные методы

Адсорбционный метод являются одним из самых распространенных средств защиты воздушного бассейна от загрязнений. Только в США введены и успешно эксплуатируются десятки тысяч адсорбционных систем. Основными промышленными адсорбентами являются активированные угли, сложные оксиды и импрегнированные сорбенты. Активированный уголь (АУ) нейтрален по отношению к полярным и неполярным молекулам адсорбируемых соединений. Он менее селективен, чем многие другие сорбенты, и является одним из немногих, пригодных для работы во влажных газовых потоках. Активированный уголь используют, в частности, для очистки газов от дурно пахнущих веществ, рекуперации растворителей и т.д.

Оксидные адсорбенты (ОА) обладают более высокой селективностью по отношению к полярным молекулам в силу собственного неоднородного распределения электрического потенциала. Их недостатком является снижение эффективности в присутствии влаги. К классу ОА относят силикагели, синтетические цеолиты, оксид алюминия.

Можно выделить следующие основные способы осуществления процессов адсорбционной очистки:

·                    После адсорбции проводят десорбцию и извлекают уловленные компоненты для повторного использования. Таким способом улавливают различные растворители, сероуглерод в производстве искусственных волокон и ряд других примесей.

·                    После адсорбции примеси не утилизируют, а подвергают термическому или каталитическому дожиганию. Этот способ применяют для очистки отходящих газов химико-фармацевтических и лакокрасочных предприятий, пищевой промышленности и ряда других производств. Данная разновидность адсорбционной очистки экономически оправдана при низких концентрациях загрязняющих веществ и (или) многокомпонентных загрязнителей.

·                    После очистки адсорбент не регенерируют, а подвергают, например, захоронению или сжиганию вместе с прочно хемосорбированным загрязнителем. Этот способ пригоден при использовании дешевых адсорбентов.

Для десорбции примесей используют нагревание адсорбента, вакуумирование, продувку инертным газом, вытеснение примесей более легко адсорбирующимся веществом, например, водяным паром. В последнее время особое внимание уделяют десорбции примесей путем вакуумирования, при этом их часто удается легко утилизировать.

Для проведения процессов адсорбции разработана разнообразная аппаратура. Наиболее распространены адсорберы с неподвижным слоем гранулированного или сотового адсорбента. Непрерывность процессов адсорбции и регенерации адсорбента обеспечивается применением аппаратов с кипящим слоем.

В последние годы все более широкое применение получают волокнистые сорбционно-активные материалы. Мало отличаясь от гранулированных адсорбентов по своим емкостным характеристикам, они значительно превосходят их по ряду других показателей. Например, их отличает более высокая химическая и термическая стойкость, однородность пористой структуры, значительный объем микропор и более высокий коэффициент массопередачи (в 10-100 раз больше, чем у сорбционных материалов). Установки, в которых используются волокнистые материалы, занимают значительно меньшую площадь. Масса адсорбента при использовании волокнистых материалов меньше, чем при использовании АУ в 15-100 раз, а масса аппарата в 10 раз. Сопротивление слоя не превышает при этом 100 Па.

Повысить технико-экономические показатели существующих процессов удается также путем оптимальной организации стадии десорбции, например, за счет программированного подъема температуры.

Следует отметить эффективность очистки на активированных углях сотовой (ячеистой) структуры, обладающих улучшенными гидравлическими характеристиками. Такие сорбенты могут быль получены нанесением определенных композиций с порошком АУ на вспененную синтетическую смолу или вспениванием смеси заданного состава, содержащей АУ, а также выжиганием наполнителя из смеси, включающей АУ вместе со связующим.

Еще одним направлением усовершенствования адсорбционных методов очистки является разработка новых модификаций адсорбентов – силикагелей и цеолитов, обладающих повышенной термической и механической прочностью. Однако гидрофильность этих адсорбентов затрудняет их применение.

Наибольшее распространение получили адсорбционные методы извлечения из отходящих газов растворителей, в том числе хлорорганических. Это связано с высокой эффективностью процесса очистки газов (95-99%), отсутствием химических реакций образования вторичных загрязнителей, быстрой окупаемостью рекуперационных установок (обычно 2-3 года) благодаря повторному использованию растворителей и длительным (до 10 лет) сроком службы АУ. Ведутся активные работы по адсорбционному извлечению из газов оксидов серы и азота.

Адсорбционные методы являются одним из самых распространенных в промышленности способов очистки газов. Их применение позволяет вернуть в производство ряд ценных соединений. При концентрациях примесей в газах более 2-5 мг/м³, очистка оказывается даже рентабельной. Основной недостаток адсорбционного метода заключается в большой энергоемкости стадий десорбции и последующего разделения, что значительно осложняет его применение для многокомпонентных смесей.

3.4.        Каталитические методы.

Каталитические методы очистки газов основаны на реакциях в присутствии твердых катализаторов, т. е. на закономерностях гетерогенного катализа. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, т. е. в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствий: которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами).

Широко распространен способ каталитического окисления токсичных органических соединений и оксида углерода в составе отходящих газов с применением активных катализаторов, не требующих высокой температуры зажигания, например металлов группы платины, нанесенных на носители.

В промышленности применяют также каталитическое восстановление и гидрирование токсичных примесей в выхлопных газах. На селективных катализаторах гидрируют СО до CH4 и Н2 О, оксиды азота — до N2 и Н2 О etc. Применяют восстановление оксидов азота в элементарный азот на палладиевом или платиновом катализаторах.

Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакционную теплоту, т.е. создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны.

Недостаток многих процессов каталитической очистки— образование новых веществ, которые подлежат удалению из газа другими методами (абсорбция, адсорбция), что усложняет установку и снижает общий экономический эффект.

Соблюдение ПДК вредных веществ в воздухе населенных мест требует систематического контроля за фактическим их содержанием в атмосферном воздухе. Такой контроль позволяет оценивать эффективность работы пылеочистного оборудования, предусматривать необходимую степень очистки и совершенствовать технологию производства для снижения концентрации вредных веществ в отходящих газах. Интервал возможных концентраций загрязнений может изменяться от 10-8 до 105 мг/м3, а полидисперсные системы характеризуются, как правило, еще и широким спектром размеров частиц от 10-2 до 103 мкм. Это исключает возможность создания универсального метода измерения концентраций атмосферных загрязнений и объясняет дифференцированный подход к способам их измерения.

При анализе запыленности воздуха предпочтение отдают методам, основанным на предварительном осаждении пыли, так как большинство из них позволяют определять массовую концентрацию взвешенных частиц. К недостаткам этих способов следует отнести циклический характер измерения, высокую трудоемкость и низкую чувствительность анализа. Наиболее часто применяют гравитационный, радиоизотопный и оптические методы.

Гравитационный метод заключается в выделении из пылегазового потока частиц пыли и определения их массы. Концентрацию пыли рассчитывают по формуле С=m/Qτ, где m - масса пробы пыли, мг; Q - объемный расход воздуха через пробоотборник, м3/с; τ - время отбора пробы, с.

Гравитационный метод признан стандартным в СССР, Англии, Франции, Бельгии и других странах. Основные преимущества этого метода - получение массовой концентрации пыли и отсутствие влияния ее химического и дисперсного состава на результаты измерений. К недостаткам относится достаточно большая трудоемкость процесса измерения.

Радиоизотопный метод измерения концентрации пыли основан на свойстве радиоактивного излучения (обычно β-излучения) поглощаться частицами пыли. Массу уловленной пыли определяют по степени ослабления радиоактивного излучения при прохождении его через слой накопленной пыли.

Результаты измерения концентрации пыли радиоизотопным методом зависят в некоторой степени от химического и дисперсного состава, что обусловлено особенностью взаимодействия радиоактивного излучения с веществом и нелинейностью зависимости степени поглощения от толщины слоя поглотителя. Однако, как показали исследования, эта погрешность не превышает ± 15%. В то же время методика измерения концентрации пыли радиоизотопным методом проще и не уступает гравитационному методу по точности и чувствительности и при создании автоматических систем контроля атмосферного воздуха вполне может заменить гравитационный метод.

В оптических методах используется зависимость физических свойств (оптической плотности, степени поглощения или рассеивания световых лучей) пылевого осадка или запыленного потока газа от концентрации пыли. Оптическая плотность пылевого осадка зависит от концентрации и толщины уловленного слоя пыли. Измерение оптической плотности по степени све-топоглощения или рассеивания света называется фотометрическим методом анализа. С помощью его можно определять до 5•10-9 г вещества в пробе. Измерение степени рассеивания света взвешенными частицами, находящимися в растворе, положено в основу нефеломет-рического метода анализа. Чувствительность этого метода до 4•10-9 г вещества в пробе.

Метод, основанный на явлении поглощения света при прохождении его через пылегазовую среду, называется абсорбционным методом. Такой метод позволяет измерять концентрацию взвешенных частиц непосредственно в атмосферном воздухе без предварительного отбора пробы.- Ослабление света в полидисперсной среде обусловлено не только поглощением, но и его рассеиванием. Изменение интенсивности рассеянного света является функцией размеров частиц. Это явление положено в основу создания приборов, позволяющих определить счетную концентрацию частиц и дисперсный состав анализируемой пыли. Серийно выпускаемый отечественной промышленностью счетчик аэрозольных частиц АЗ-2М регистрирует частицы размером более 0,3 мкм в интервале концентраций от 0 до 25 частиц/см2.

Одним из перспективных способов измерения концентрации пыли является пьезоэлектрический метод. Возможны два варианта этого метода. В основе первого лежит измерение изменений частоты колебаний пьезокристалла при осаждении на его поверхности пыли. Этот метод позволяет непосредственно измерять массовую концентрацию пыли. В основе второго - счет электрических импульсов, возникающих при соударении частиц пыли с пьезокристаллом. Этот метод может быть использован для счетной концентрации частиц пыли.

При измерении концентрации пыли находят применение и так называемые электрические методы: индукционный, контактно-электрический, емкостный и др. Эти методы положены в основу создания пылемеров, измеряющих концентрации аэрозолей непосредственно в пылевоздушной среде. На достоверность результатов этих приборов , существенное влияние оказывают влажность, природа пыли и изменение ее дисперсного состава во времени, поэтому широкого распространения для анализа атмосферного воздуха они не получили.

Контроль концентраций газо- и парообразных примесей. Анализ газового состава атмосферного воздуха производится с помощью газоанализаторов, позволяющих осуществлять мгновенный и непрерывный контроль содержания в нем вредных примесей.

Для экспрессного определения токсичных веществ широкое применение нашли универсальные газоанализаторы упрощенного типа (УГ-2, ГХ-2 и др.), основанные на линейно-колористическом методе анализа. При просасывании воздуха через индикаторные трубки, заполненные твердым веществом - поглотителем, происходит изменение окраски индикаторного порошка. Длина окрашенного слоя пропорциональна концентрации исследуемого вещества, измеряемой по шкале в мг/л. Выпускаемый серийно отечественной промышленностью универсальный газовый анализатор УГ-2 позволяет определить концентрацию 16 различных газов и паров. Погрешность измерения не превышает ± 10% от верхнего предела каждой шкалы.

Для постоянного контроля состояния воздушной среды наибольшее применение нашли автоматические приборы, непрерывно регистрирующие концентрации анализируемого компонента в течение определенного времени. Методы контроля газовых примесей можно разделить на оптические, электрохимические, термохимические, хроматографические и др.

Наибольшее распространение для определения токсичных примесей в воздухе нашли оптические методы. Принцип действия оптических газоанализаторов основан на избирательном поглощении газами лучистой энергии в инфракрасной, ультрафиолетовой или видимой областях спектра. К приборам, работающим в инфракрасной области, относятся оптико-акустические газоанализаторы. Обычно они применяются для определения оксида и диоксида углерода, а также метана. Приборы, в которых лучистая энергия поглощается газами в ультрафиолетовой области спектра, применяют для обнаружения в воздухе паров ртути, карбонила, никеля, озона и некоторых других газов. Большое распространение получили фотоколориметрические газоанализаторы, действие которых основано на поглощении лучистой энергии в видимой области спектра растворами или индикаторными лентами, изменяющими свою окраску при взаимодействии с определенным газовым компонентом Различают жидкостные и ленточные фотоколориметры. В жидкостных фотоколориметрах концентрация анализируемого компонента воздуха определяется по изменению светопоглощения раствора. Принцип действия ленточных фотоколориметров основан на фотометрировании индикаторной ленты, предварительно обработанной раствором, вступающим в химическую реакцию с определенным компонентом. Чувствительность ленточных фотоколориметров выше, чем жидкостных, поэтому они нашли более широкое применение.

В последние годы получили распространение газоанализаторы, использующие не поглощение, а эмиссию излучения анализируемой газовой примеси. Сущность этого метода состоит в том, что исследуемые молекулы, например озона, оксидов азота, соединений серы, тем или иным способом приводят в состояние оптического возбуждения и затем регистрируют интенсивность люминесценции, возникающей при возвращении их в равновесное состояние. Применяются три типа люминесценции (и соответственно три типа газоанализаторов), различающихся между собой по типу возбуждения: хемилюминесценция (возбужденные молекулы возникают в ходе химической реакции), оптически возбуждаемая люминесценция (флюоресценция) и люминесценция в пламени (пламенно-фотометрические газоанализаторы).

Электрические газоанализаторы подразделяются на кондуктометрические и кулонометрические. В основу принципа действия кондуктометрических приборов положено поглощение анализируемого компонента газовой смеси соответствующим раствором и измерение его электропроводности. Такие газоанализаторы широко применяются для определения концентрации сероводорода, сернистого ангидрида, аммиака, оксида и диоксида углерода. В кулонометрических газоанализаторах электрохимическая реакция протекает в ячейке между анализируемым газом и электролитом, в результате которой во внешней цепи появляется электродвижущая сила, пропорциональная концентрации определяемого компонента воздуха. Этим методом можно измерять содержание в атмосфере сернистого ангидрида, сероводорода, диоксида азота, озона, фтористого и хлористого водорода и др.

При хроматографических методах анализа происходит разделение газовоздушной смеси сорбционными методами в динамических условиях. Разделение происходит в результате поглощения газовых компонентов на активных центрах адсорбции. В виду различия физических свойств отдельных составляющих газовоздушной смеси они продвигаются по хроматогра-фической колонке с разной скоростью, что позволяет раздельно фиксировать их на выходе. С помощью хро-матографических методов можно проводить качественный и количественный анализ органических и неорганических примесей воздуха с чувствительностью до 10-9 - 10-12%. Хроматографический метод успешно используется для определения содержания диоксида серы, сероводорода, меркаптанов, выхлопных газов автомобилей и обнаружения следов металлов в атмосфере (селена, теллура, ртути, мышьяка и др.).

Широкое применение для регистрации выбросов промышленных предприятий, а также исследования загрязнений атмосферы получили лазерные методы, в которых учитывается рассеивание излучения лазера частицами аэрозолей и молекулами газов. Рассеянная энергия попадает на приемную антенну локатора. Регистрируя и расшифровывая следы взаимодействия лазерных импульсов с атмосферными слоями, можно извлечь информацию о давлении, плотности, температуре, концентрации различных газовых составляющих атмосферы и других параметрах.

Создание лазеров большой мощности с узким и стабильным спектром излучения, лазеров с полностью автоматизированным циклом работ и передачей результатов в вычислительный центр, совершенствование методов извлечения информации из результатов зондирования позволяют осуществлять оперативный контроль степени загрязнения атмосферы в широких масштабах. Наиболее распространенные модели приборов для измерения концентраций пыли и газообразных примесей в атмосферном воздухе приведены в табл. 27.

Таблица 27

Тип прибора

Метод измерений

Определяемое вещество

Измеряемая концентрация, мг/м3

Погрешность, %

ППА

Гравитационный (фильтрация)

Аэрозоль

Свыше 1,0

± 20

ПРИЗ

Радиоизотопный (β-излучение)

»

1-500

± 15

ФЭКП

Ленточный фотометр

»

0-4000

± 20

ФЭН-90

Нефелометрический

»

0-300

± 5,0

АЗ-5

Счетчик частиц (регистрация рассеянного света)

»

1-300

± 20

КДМ-1

Пьезоэлектрический

»

0-100

± 8,0

ОА-5501

Оптико-акустический

СО; СН4; СО2

0-4000

± 5,0

ФЛ-5601

Фотоколориметрический

SO2; NH3; NOx; H2S

0-20

± 10

«Атмосфера»

Электрохимический

О3; SO2; H2S

0-15000

-

КУ-3

Кондуктометрический

СО; СО2; пары бензина

0-500

± 5,00

8440

Хемилюминесцентный

NOх

0-5

± 3,0

ГПИ-А

Пламенноионизационный

Углеводороды

0-5

± 1,0

Информация о файле
Название файла ОЧИСТКА И УТИЛИЗАЦИЯ ОТХОДЯЩИХ ГАЗОВ от пользователя qtesting
Дата добавления 10.5.2020, 20:56
Дата обновления 10.5.2020, 20:56
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 50.12 килобайт (Примерное время скачивания)
Просмотров 603
Скачиваний 63
Оценить файл