Законы гидростатики и их практические применения

Описание:
Понятие Жидкости.
Основные свойства жидкости
Понятие гидростатики. Гидростатическое давление. Свойства.
Основное уравнение гидростатики
Примеры проявления и использования закона гидростатики
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

Санкт-Петербургский Государственный Университет Сервиса и Экономики.

Реферат на тему:

“Законы гидростатики и их практические применения”

                                                                                
               Выполнил:

                                                                                
               Студент 3курса

                                                                                
                    ***** отделения

                                                                                               Группы № ****

                                                                                
               *********.

                                                                                               Проверил:

                                                                                
               Сухов Г.С.

Санкт-Петербург 2012г.

Оглавление

1. Понятие Жидкости.                                                                                 
            3

2. Основные свойства жидкости.                                                                       
    4

3. Понятие гидростатики. Гидростатическое давление. Свойства.                    6

4. Основное уравнение гидростатики.                                                                   8

5. Примеры проявления и использования закона гидростатики.                        9

6. Литература.                                                                     
                                   14

Жидкость— одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое.

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние(происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

В технической гидромеханике под жидкостью понимают физическое тело, обладающее:

 а) в отличие от твёрдого тела текучестью;

 б) в отличие от газа весьма малой изменяемостью своего объёма.

 Иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова, удовлетворяющую условиям а) и б) называют капельной жидкостью.

Основные свойства жидкости:

1.Текучесть

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

2.Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, водасжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C. А, например, тормозная жидкость в автомобилях, сжимается очень плохо.

3.Вязкость

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

4.Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности.

5.Испарение и конденсация

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

 Понятие гидростатики

Гидравлика делится на два раздела: гидростатика и гидродинамика. Гидродинамика является более обширным разделом и будет рассмотрена в последующих лекциях. В этой лекции будет рассмотрена гидростатика.

Гидростатикой называется раздел гидравлики, в котором рассматриваются законы равновесия жидкости и их практическое применение.

Гидростатическое давление

В покоящейся жидкости всегда присутствует сила давления, которая называется гидростатическим давлением. Жидкость оказывает силовое воздействие на дно и стенки сосуда. Частицы жидкости, расположенные в верхних слоях водоема, испытывают меньшие силы сжатия, чем частицы жидкости, находящиеся у дна.

Рассмотрим резервуар с плоскими вертикальными стенками, наполненный жидкостью (рис.2.1, а). На дно резервуара действует сила P равная весу налитой жидкости G = γ V, т.е. P = G.

Если эту силу P разделить на площадь дна Sabcd, то мы получим среднее гидростатическое давление, действующее на дно резервуара.

Гидростатическое давление обладает свойствами.

Свойство 1. В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости.

Для доказательства этого утверждения вернемся к рис.2.1, а. Выделим на боковой стенке резервуара площадку Sбок (заштриховано). Гидростатическое давление действует на эту площадку в виде распределенной силы, которую можно заменить одной равнодействующей, которую обозначим P. Предположим, что равнодействующая гидростатического давления P, действующая на эту площадку, приложена в точке А и направлена к ней под углом φ (на рис. 2.1 обозначена штриховым отрезком со стрелкой). Тогда сила реакции стенки R на жидкость будет иметь ту же самую величину, но противоположное направление (сплошной отрезок со стрелкой). Указанный вектор R можно разложить на два составляющих вектора: нормальный Rn (перпендикулярный к заштрихованной площадке) и касательныйRτ к стенке.

Рис. 2.1. Схема, иллюстрирующая свойства гидростатического давления а - первое свойство; б - второе свойство

Сила нормального давления Rn вызывает в жидкости напряжения сжатия. Этим напряжениям жидкость легко противостоит. Сила Rτ действующая на жидкость вдоль стенки, должна была бы вызвать в жидкости касательные напряжения вдоль стенки и частицы должны были бы перемещаться вниз. Но так как жидкость в резервуаре находится в состоянии покоя, то составляющая Rτ отсутствует. Отсюда можно сделать вывод первого свойства гидростатического давления.

Свойство 2. Гидростатическое давление неизменно во всех направлениях.

В жидкости, заполняющей какой-то резервуар, выделим элементарный кубик с очень малыми сторонами Δx, Δy, Δz (рис.2.1, б). На каждую из боковых поверхностей будет давить сила гидростатического давления, равная произведению соответствующего давления PxPy Pz на элементарные площади. Обозначим вектора давлений, действующие в положительном направлении (согласно указанным координатам) как P"xP"yP"z, а вектора давлений, действующие в обратном направлении соответственно P""xP""yP""z. Поскольку кубик находится в равновесии, то можно записать равенства

P"xΔyΔz=P""xΔyΔz
P"yΔxΔz = P""yΔxΔz
P"zΔxΔy + γΔx, Δy, Δz = P""zΔxΔy

где γ - удельный вес жидкости;
Δx, Δy, Δz - объем кубика.

Сократив полученные равенства, найдем, что

P"x = P""xP"y = P""yP"z + γΔz = P""z

Членом третьего уравнения γΔz, как бесконечно малым по сравнению с P"и P""z, можно пренебречь и тогда окончательно

P"x = P""xP"y = P""yP"z=P""z

Вследствие того, что кубик не деформируется (не вытягивается вдоль одной из осей), надо полагать, что давления по различным осям одинаковы, т.е.

P"x = P""x = P"y = P""y = P"z=P""z

Это доказывает второй свойство гидростатического давления.

Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.

Это положение не требует специального доказательства, так как ясно, что по мере увеличения погружения точки давление в ней будет возрастать, а по мере уменьшения погружения уменьшаться. Третье свойство гидростатического давления может быть записано в виде

P=f(x, y, z)

Основное уравнение гидростатики

Основным законом (уравнением) гидростатики называется уравнение:

,

где

p — гидростатическое давление (абсолютное или избыточное) в произвольной точке жидкости,

ρ — плотность жидкости,

g — ускорение свободного падения,

z — высота точки над плоскостью сравнения (геометрический напор),

H — гидростатический напор.

Уравнение показывает, что гидростатический напор во всех точках покоящейся жидкости является постоянной величиной.

Иногда основным законом гидростатики называют принцип Паскаля.

Примеры проявления и использования закона гидростатики.

Открытие основного закона гидростатики - одно из крупнейших завоеваний античной науки. Чтобы оценить значение открытия, рассмотрим примеры проявления и использования этого закона в природе, широко известного как закон Архимеда.

Воды южных морей имеют более высокую соленость и плотность, чем воды арктического бассейна. Поэтому в Арктике нередки случаи, когда воды теплых течений опускаются под холодные воды северных широт. Например, в районе севернее Шпицбергена теплое южное течение опускается под холодные воды Ледовитого океана. Подобным же образом теплое течение Жаннетты, выходя из Берингова пролива, проходит под водами Арктики и выходит на поверхность лишь у берегов Северной Америки. Различная соленость вод имеет большое значение для возникновения течений и в южных широтах. В Мраморном море вода более соленая и быстрее испаряется, чем в Черном. Поэтому через Босфор в придонных слоях вода протекает из Мраморного моря в Черное, в поверхностных же слоях имеет место противоположное течение.

Подземные реки могут иметь выход не только на земную поверхность, но и на дно моря. Будучи более легкими, воды этих рек в неглубоком море могут подниматься до его поверхности, практически не смешиваясь с соленой водой. Подобные выходы пресных вод в открытом море имеются вблизи Марокканского побережья Атлантического океана (у Агадира) и в Коринфском заливе Ионического моря - вблизи Коринфа.

Поскольку средняя плотность тела рыб близка к плотности воды, их вес вблизи основных горизонтов жизнедеятельности достаточно хорошо уравновешивается выталкивающей силой по закону Архимеда. Благодаря ритмичной работе мышц рыба может отталкиваться от воды и таким образом перемещаться. При этом по ее телу в направлении от головы к хвосту с возрастающей амплитудой пробегает плоская или винтообразная упругая волна . Скорость распространения этой волны превышает быстроту перемещения рыбы. За счет ритмичного отталкивания от воды при распространении по телу упругой волны и осуществляется плавание рыб. К помощи плавников рыбы прибегают только для поддержания равновесия и при медленных перемещениях.

Такие обитатели морей, как осьминог, каракатица, моллюск сальпа, при перемещении используют принцип реактивного движения - они втягивают воду в специальные мускулистые мешки своего тела, а затем выталкивают ее наружу. Благодаря этому животные получают возможность перемещаться в направлении, противоположном выбрасываемой струе. А веслоногие, например черепахи, плавают, отталкиваясь от воды ногами.

Мелкие рыбы обычно движутся стаями. К этому их принуждает то обстоятельство, что при увеличении скорости движения близко расположенных тел по закону Бернулли понижается давление в пространстве между ними. Давление между каждыми двумя соседними рыбами в рыбьем косяке будет меньше, чем в среде, не возмущенной движением рыбьей стаи. В этом случае рыбы будут испытывать небольшую прижимающую их друг к другу силу и двигаться вместе. Если бы рыбы в косяке не подчинялись действию гидродинамических сил, они затрачивали бы больше энергии для своего перемещения.

В Средиземном море, у берегов Египта, водится удивительная рыба фагак. Приближение опасности заставляет фагака быстро заглатывать воду. При этом в пищеводе рыбы происходит бурное разложение продуктов питания с выделением значительного количества газов. Газы заполняют не только действующую полость пищевода, но и имеющийся при ней слепой вырост. В результате тело фагака сильно раздувается, и, в соответствии с законом Архимеда, он быстро всплывает на поверхность водоема. Здесь он плавает, повиснув вверх брюхом, пока выделившиеся в его организме газы не улетучатся. После этого сила тяжести опускает его на дно водоема, где он укрывается среди придонных водорослей.

Живущий в тропических морях моллюск наутилус может быстро всплывать и вновь опускаться на дно. Моллюск этот живет в закрученной спиралью раковине. Когда ему нужно подняться или опуститься, он изменяет объем внутренних полостей в своем организме.

У широко распространенного в Европе водяного паука, обитающего в стоячих или слабо проточных водах, поверхность брюшка не смачивается водой. Уходя в глубину, он уносит с собой приставшую к брюшку воздушную оболочку, которая придает ему запас плавучести и помогает возвращению на поверхность.

Произрастающий в дельте Волги вблизи Астрахани чилим (водяной орех) после цветения дает под водой тяжелые плоды. Эти плоды настолько тяжелы, что вполне могут увлечь на дно все растение. Однако в это время у чилима, растущего в глубокой воде, на черешках листьев возникают вздутия, придающие ему необходимую подъемную силу, и он не тонет.

Известно, что наибольшие по размерам животные нашей планеты живут в воде. Закон Архимеда способствует тому, чтобы они не были раздавлены весом своего тела. В наше время самым крупным животным является кит, длина его может достигать 30 м. В мезозое крупнейшими были динозавры и среди них атлантозавр, длина тела которого составляла около 60 м.

Так как тела обитателей морей и рек содержат в своем составе много воды, давление в организме этих животных и в окружающей среде легко выравнивается. У рыб с плавательным пузырем такое уравнивание происходит лишь в сферах их постоянной жизнедеятельности. При быстром подъеме из области больших глубин на поверхность водоема плавательный пузырь рыб под действием высокого внутреннего давления выдавливается наружу, что приводит к их гибели.

В Мертвом море за счет большого количества растворенных солей (более 27% по весу) плотность воды достигает 1,16 г/см3. Купаясь в этом море, человек очень мало погружается в воду, находясь как бы на поверхности, поскольку средняя плотность тела человека меньше плотности воды. В нашей стране еще более высокая плотность воды наблюдается в заливе Кара-Богаз-Гол на Каспии и в озере Эльтон.

Для жизни под водой человек совершенно не приспособлен. На глубине 20 м под действием внешнего давления у него могут лопнуть барабанные перепонки. Опуститься же на глубину более 70 м без специального костюма человеку совершенно невозможно. (Правда, натренированные пловцы на очень короткое время опускаются под воду на глубину до 51 м).

В человеческом организме в полости живота давление немного превышает атмосферное, в полости груди, наоборот, меньше атмосферного. Если человек, находясь неглубоко под водой, попытается дышать через узкую трубочку (тростинку или соломинку ), то он может непродолжительное время это делать только при толщине находящегося над ним слоя воды менее 1 м. Дополнительное давление на человеческий организм столба воды в 1 м и более быстро приводит к полному прекращению дыхания и кровообращения. При этом кровь переполняет сердце, а брюшная полость и ноги почти совершенно обескровливаются. В процессе же ныряния жизнедеятельность человека существенным образом не нарушается, поскольку в этом случае он набирает в легкие дополнительное количество воздуха, которое помогает ему уравновешивать давление воды на его организм.

Известный русский адмирал М.П. Лазарев неоднократно показывал матросам во время плаваний следующий любопытный опыт с бутылкой. С помощью свинцового груза порожнюю закупоренную бутылку матросы опускали под воду на глубину до 430 м. После ее подъема на палубу они с удивлением убеждались, что бутылка заполнена глубинной водой и плотно закрыта пробкой, причем верх и низ пробки поменялись местами. Это происходило за счет давления воды, которое, в соответствии с законами гидродинамики, на глубине 430 м имеет вполне достаточную для этого величину. Опыт Лазарева представляет собой яркую демонстрацию действия давления воды на больших глубинах. Это позволяет лучше понять действие давления воды и на человеческий организм.

Многим, наверное, не раз приходилось наблюдать ледоход на реках. Еще более грандиозное зрелище представляют собой айсберги - «плавучие ледяные горы» больших размеров. Айсберги - это массы материкового льда, оторвавшиеся от ледника или ледового барьера и плавающие в полярных морях и прилегающих к ним акваториях.

Средняя высота надводной части айсберга нередко достигает 50...70 м, максимальное ее значение приближается к 450 м. Наибольшая длина подводной части может доходить до 130 км. Объем надводной части айсберга составляет небольшую часть его полного объема.

Перемещаясь в более теплые воды, айсберг оплавляется снизу, в результате чего центр тяжести его перемещается выше центра, к которому приложено выталкивающее действие воды. Такой айсберг теряет равновесие и с шумом переворачивается.

При спокойном море и отсутствии ветра айсберг с подтаявшей нижней частью начинает раскачиваться, что является признаком предстоящего переворачивания. Когда айсберг находится в состоянии неустойчивого равновесия, даже работа машин находящегося поблизости корабля может дать толчок к переворачиванию.

Таяние айсбергов на южной границе северных морей вызывает некоторое понижение солености воды. В этом же районе в процессе таяния айсберги сбрасывают на дно морей захваченные ими части морен, а иногда и довольно крупные куски скал.

В средней полосе Советского Союза имеются следы подобной деятельности айсбергов, относящиеся к периоду, когда территория нашей страны была дном моря. Аналогично происходит вынос окатанной гальки на дно арктического бассейна. Примерзая ко льду у берегов, галька вместе с льдинами уносится впоследствии в океан и опускается на его дно после таяния льда.

В некоторых реках при быстром течении за счет интенсивного перемешивания воды происходит переохлаждение отдельных участков дна. При этом переохлажденный участок дна покрывается льдом внутриводного и отчасти поверхностного происхождения. Иногда донный лед занимает значительную часть сечения реки. Тогда река выходит из берегов, и становится возможным наводнение.

Так как подъемная сила льда пропорциональна его объему, а сила сцепления с ложем реки пропорциональна поверхности, то при отложении достаточно большого количества льда на дне он может преодолеть сцепление с ложем и всплыть на поверхность. Поднявшаяся на поверхность губчатая масса донного льда обычно содержит различные включения: камни, песок, а иногда и затонувшие якоря вместе с якорными цепями. Донный лед может возникать не только на реках, но и в неглубоких местах морей и озер (вблизи берегов), где переохлаждение достигает дна водоема. В этом случае всплывающий лед поднимает на поверхность придонные водоросли.

Искусно используют закон Архимеда подводники. Если подводная лодка плывет между слоями воды с разной температурой, ее балласт подбирают таким образом, чтобы обеспечить небольшую перегрузку для теплого слоя и недогрузку для холодного. В этом случае лодка лежит на холодном слое, не нуждаясь в специальных мерах для поддержания равновесия. Для батискафа с небольшой отрицательной плавучестью слой более плотной воды может играть роль уравновешивающего «жидкого грунта».

При переходе подводной лодки из морских глубин в устье реки, подводники тщательно следят за расстоянием между лодкой и дном, так как в пресной воде выталкивающая сила Архимеда меньше, чем в морской, и при недосмотре со стороны экипажа лодка может сесть на илистый грунт речного устья.

Очень большое значение закон Архимеда имеет в технике бурения. Буровая колонна для бурения глубоких скважин уже на глубине 5 км в воздухе имела бы вес 226 тонн. Однако в промывочной жидкости плотностью 2 г/см3 в соответствии с законом Архимеда вес буровой колонны будет сильно уменьшен. Алюминиевые трубы «теряют» в весе в этих условиях до 50%. Подбором промывочной жидкости можно намного уменьшить вес буровой колонны. Это в огромной степени способствует успеху бурения.

Литература.

1.Википедия.

2.Касаткин А.Г. Основные процессы и аппараты химической технологии / Москва, 2004г.

3.gidravel.ru(Образовательный ресурс по гидравлике и гидропневмопроводу)

4.pppa.ru(Инженерная геология)


Информация о файле
Название файла Законы гидростатики и их практические применения от пользователя z3rg
Дата добавления 9.2.2013, 21:18
Дата обновления 9.2.2013, 21:18
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 1 мегабайт (Примерное время скачивания)
Просмотров 10288
Скачиваний 140
Оценить файл