IPB

Здравствуйте, гость ( Вход | Регистрация )

Поиск по файловому архиву
  Add File

> Периодический закон и периодическая система химических элементов

Информация о файле
Название файла Периодический закон и периодическая система химических элементов от пользователя z3rg
Дата добавления 6.2.2016, 17:35
Дата обновления 6.2.2016, 17:35
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 240.59 килобайт (Примерное время скачивания)
Просмотров 2862
Скачиваний 108
Оценить файл

Описание работы:


История возникновения Периодического закона
Открытие Периодического закона
Развитие Периодического закона в XX веке
Периодические свойства химических элементов
Проявление периодического закона
Структура периодической системы
Значение периодической системы
Загрузить Периодический закон и периодическая система химических элементов
Реклама от Google
Доступные действия

Введите защитный код для скачивания файла и нажмите "Скачать файл"

Защитный код
Введите защитный код

Текст работы:


Минский государственный колледж сферы обслуживания

Реферат

по учебной дисциплине «Химия»

Тема: «Периодический закон и периодическая система химических элементов»

2015г.


Содержание                                                                

1.  История возникновения Периодического закона.............................3

2. Открытие Периодического закона......................................................5

3. Развитие Периодического закона в XX веке......................................7

4. Периодические свойства химических элементов.............................9

5. Проявление периодического закона..................................................10

6. Структура периодической системы..................................................14

7. Значение периодической системы....................................................16

  История возникновения периодического закона:

Как известно, первая в истории химии "Таблица простых тел" была составлена А.Лавуазье в 1787 г. Все простые вещества были разделены на четыре группы: "I. Простые вещества, представленные во всех трех царствах природы, которые можно рассматривать как элементы тел:свет,теплород,кислород,азот,водород. II. Простые неметаллические вещества, окисляющиеся и кислоты:сурьма,фосфор,уголь,радикал муриевой кислоты,радикал плавиковой кислоты,радикал борной кислоты. III. Простые металлические вещества, окисляемые и дающие кислоты: сурьма, серебро, мышьяк, висмут, кобальт, медь, олово, железо, марганец, ртуть,  молибден, никель, золото, платина, свинец, вольфрам, цинк. IV. Простые вещества, солеобразующие и землистые: известь (известковая земля), магнезия (основание сульфата магния),барит (тяжелая земля), глинозем (глина, квасцовая земля),кремнезем (кремнистая земля)". Эта таблица легла в основу химической номенклатуры, разработанной Лавуазье. Д.Дальтон ввел в науку важнейшую количественную характеристику атомов химических элементов - относительный вес атомов или атомный вес.

При отыскании закономерностей в свойствах атомов химических элементов ученые прежде всего обратили внимание на характер изменения атомных весов. В 1815-1816 гг. английский химик У.Праут (1785-1850) опубликовал в "Анналах философии" две анонимные статьи, в которых была высказана и обоснована идея, что атомные веса всех химических элементов являются целочисленными (т.е. кратными атомному весу водорода, который принимался тогда равным единице). Гипотеза Праута была очень заманчивой и вызвала постановку многих экспериментальных исследований с целью возможно более точного определения атомных весов химических элементов.В 1829 г. немецкий химик И.Деберейнер (1780-1849) сопоставлял атомные веса у сходных химических элементов: Литий, Кальций, Хлор, Сера, Марганец, Натрий, Стронций,Бром, Селен, Хром,Калий, Барий, Иод,Теллур, Железо и нашел, что атомный вес среднего элемента равен полусумме атомных весов крайних элементов. Поиски новых триад привели Л.Гмелина (1788-1853) - автора всемирно известного справочного руководства по химии - к установлению многочисленных групп сходных элементов и к созданию их своеобразной классификации.

В 60-х гг. XIX века ученые перешли к сопоставлению между собой уже самих групп химически сходных элементов. Так, профессор Парижской горной школы А.Шанкуртуа (1820-1886) расположил все химические элементы на поверхности цилиндра в порядке возрастания их атомных весов так, чтобы получилась "винтовая линия". При таком расположении сходные элементы часто попадали на одну и ту же вертикальную линию. В 1865 г. английским химиком Д.Ньюлендсом (1838-1898) была опубликована таблица, которая включала в себя 62 химических элемента. Элементы были расположены и пронумерованы в порядке возрастания атомных весов. Ньюлендс использовал нумерацию, чтобы подчеркнуть, что через каждые семь элементов свойства химических элементов повторяются. В 1864 г. немецкий профессор Л.Майер (1830-1895) составил таблицу из 44 химических элементов (из 63 известных). В 1868 г. английский химик У.Олдинг (1829-1921) предложил таблицу, которая, по мнению автора, демонстрировала закономерную взаимосвязь между всеми элементами.

Оценивая этот период, Д.И.Менделеев писал "Нет ни одного сколько-нибудь общего закона природы, который бы основался сразу, всегда его утверждению предшествует много предчувствий, а признание закона наступает не тогда, когда он вполне осознан во всем его значении, а лишь по утверждении его следствий опытами, которые естествоиспытатели должны признавать высшею инстанциею своих соображений и мнений".

В 1868 г. Д.И.Менделеев начал работать над курсом "Основы химии". Для наиболее логичного расположения материала необходимо было как-то расклассифицировать 63 химических элемента. Первый вариат Периодической системы химических элементов был предложен Д.И.Менделеевым в марте 1869 г.

3

Открытие Периодического закона

В марте 1869 года на заседании Русского химического общества было зачитано сообщение русского ученого Дмитрия Ивановича Менделеева об открытии им Периодического закона химических элементов. В том же году вышло первое издание менделеевского учебника «Основы химии», в котором была приведена его периодическая таблица. В ноябре 1870 года он доложил РХО статью «Естественная система элементов и применение её к указанию свойств не открытых элементов», в которой Менделеев впервые употребил термин«периодический закон» и указал на существование нескольких не открытых ещё элементов.

В 1871 году в итоговой статье «Периодическая законность химических элементов» Менделеев дал следующую формулировку Периодического закона: «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Тогда же Менделеев придал своей периодической таблице вид, ставший классическим (т. н. короткопериодный вариант).В отличие от своих предшественников, Менделеев не только составил таблицу и указал на наличие несомненных закономерностей в численных величинах атомных масс, но и решился назвать эти закономерности общим законом природы. На основании предположения, что атомная масса предопределяет свойства элемента, он взял на себя смелость изменить принятые атомные веса некоторых элементов и подробно описать свойства не открытых ещё элементов. Для предсказания свойств простых веществ и соединений Менделеев исходил из того, что свойства каждого элемента являются промежуточными между соответствующими свойствами двух соседних элементов в группе периодической таблицы (то есть сверху и снизу) и одновременно двух соседних элементов в периоде (слева и справа) (т. н. «правило звезды»).

Д.И.Менделеев на протяжении многих лет боролся за признание Периодического закона; его идеи получили признание только после того, как были открыты предсказанные Менделеевым элементы: экаалюминий, экабор и экасилиций, соответственно галлий(Поль Лекок де Буабодран,1875),скандий(Ларс Нильсон,1879) и германий(Клеменс Винклер,1886). С середины 1880-х годов Периодический закон был окончательно признан в качестве одной из теоретических основ химии.

По легенде, мысль о системе химических элементов пришла к Дмитрию Ивановичу Менделееву во сне, однако известно, что однажды на вопрос, как он открыл периодическую систему, учёный ответил: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово».

Написав на карточках основные свойства каждого элемента (их в то время было известно 63, из которых один — дидим Di — оказался в дальнейшем смесью двух вновь открытых элементов, празеодима и неодима), Менделеев Дмитрий Иванович начинает многократно переставлять эти карточки, составлять из них ряды сходных по свойствам элементов, сопоставлять ряды один с другим. Итогом работы стал отправленный в 1869 году в научные учреждения Российской Федерации и других стран первый вариант системы («Опыт системы элементов, основанной на их атомном весе и химическом сходстве»), в котором элементы были расставлены по девятнадцати горизонтальным рядам (рядам сходных элементов, ставших прообразами групп современной системы) и по шести вертикальным столбцам (прообразам будущих периодов). В 1870 году Дмитрий Иванович Менделеев в «Основах химии» публикует второй вариант системы («Естественную систему элементов»), имеющий более привычный нам вид: горизонтальные столбцы элементов-аналогов превратились в восемь вертикально расположенных групп; шесть вертикальных столбцов первого варианта превратились в периоды, начинавшиеся щелочным металлом и заканчивающиеся галогеном. Каждый период был разбит на два ряда; элементы разных вошедших в группу рядов образовали подгруппы.

5

Развитие Периодического закона в XX веке

В начале XX века Периодическая система элементов неоднократно видоизменялась для приведения в соответствие с новейшими научными данными. Д.И.Менделеев и У. Рамзай пришли к выводу о необходимости образования в таблице нулевой группы элементов, в которую вошли инертные газы. Инертные газы явились, таким образом, элементами, переходными между галогенами и щелочными металлами. Б. Браунер нашёл решение проблемы размещения в таблице всех редкоземельных элементов, предложив в 1902 году помещать их в одну ячейку; в предложенном им варианте таблицы шестой период таблицы был длиннее, чем четвёртый и пятый, которые, в свою очередь, длиннее, чем второй и третий периоды.

Дальнейшее развитие Периодического закона было связано с успехами физики: установление делимости атома на основании открытия электрона и радиоактивности в конце концов позволило понять причины периодичности свойств химических элементов и создать теорию Периодической системы.

Для химии серьёзную проблему составляла необходимость размещения в Периодической таблице многочисленных продуктов радиоактивного распада, имеющих близкие атомные массы, но значительно отличающихся периодами полураспада. Т. Сведберг в 1909 году  доказал, что свинец и неон, полученные в результате радиоактивного распада и отличающиеся по величине атомных масс от «обычных» элементов, химически им полностью тождественны. В 1911 году  Ф. Содди предложил размещать химически неразличимые элементы, имеющие различные атомные массы (изотопы) в одной ячейке таблицы.

В 1913 году английский физик Г.Мозли установил, что корень из характеристической частоты рентгеновского излучения элемента (ν) линейно зависит от целочисленной величины—атомного номера Z), который совпадает с номером элемента в Периодической таблице. Закон Мозли дал возможность экспериментально определить положение элементов в Периодической таблице. Атомный номер, совпадающий, как предположил в 1911 году голландский физик А. Ван ден Брук, с величиной положительного заряда ядра атома, стал основой классификации химических элементов. В 1920 году английский физик Дж. Чедвик экспериментально подтвердил гипотезу Ван ден Брука; тем самым был раскрыт физический смысл порядкового номера элемента в Периодической системе. Периодический закон получил современную формулировку: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядер атомов элементов».

В 1921—1923 годах, основываясь на модели атома Бора-Зоммерфельда, представляющей собой компромисс между классическими и квантовыми представлениями, Н. Бор заложил основы формальной теории Периодической системы. Причина периодичности свойств элементов, как показал Бор, заключалась в периодическом повторении строения внешнего электронного уровня атома.

Были разработаны полудлинный (см. выше) и длинный варианты Периодической таблицы, состоящие из блоков (семейств), в которых внешние электронные орбитали атомов одинаковы по орбитальному квантовому числу (s, p, d и f). В s-блок входят щелочные и щёлочноземельные металлы, в d— переходные металлы, в f—лантаноиды и актиноиды, в p— остальные элементы.В середине XX века В. М. Клечковский эмпирически установил и теоретически обосновал правило , описывающее последовательность заполнения электронных орбиталей атомов по мере роста заряда ядра. В отличие от предыдущих подходов, это правило учитывает взаимодействие между электронами в атоме.

7

Периодические свойства химических элементов

В принципе, свойства химического элемента объединяют все без исключения его характеристики в состоянии свободных атомов или ионов, гидратированных или сольватированных, в состоянии простого вещества, а также формы и свойства образуемых им многочисленных соединений. Но обычно под свойствами химического элемента подразумевают, во-первых, свойства его свободных атомов и, во-вторых, свойства простого вещества. Большинство этих свойств проявляет явную периодическую зависимость от атомных номеров химических элементов. Среди этих свойств наиболее важными, имеющими особое значение при объяснении или предсказании химического поведения элементов и образуемых ими соединений являются:

·энергия ионизации атомов;

·энергия сродства атомов к электрону;

·электроотрицательность;

·атомные (и ионные) радиусы;

·энергия атомизации простых веществ

·степени окисления;

·окислительные потенциалы простых веществ.

9

Проявления периодического закона в отношении энергии ионизации

Зависимость энергии ионизации атома от порядкового номера элемента  носит отчетливо периодический характер. Легче всего удалить электрон из атомов щелочных металлов, включающих по одному валентному электрону, труднее всего— из атомов благородных газов, обладающих замкнутой электронной оболочкой. Поэтому периодичность изменения энергии ионизации атомов характеризуется минимумами, отвечающими щелочным металлам, и максимумами, приходящимися на благородные газы. Наряду с этими резко выраженными минимумами и максимумами на кривой энергии ионизации атомов наблюдаются слабо выраженные минимумы и максимумы, которые по-прежнему нетрудно объяснить с учетом упомянутых эффектов экранирования и проникновения, эффектов межэлектронных взаимодействий и т. д.

Проявления периодического закона в отношении энергии сродства к электрону

Периодичность значений энергий сродства атомов к электрону объясняется, естественно, теми же самыми факторами, которые уже были отмечены при обсуждении ионизационных потенциалов (см. определение энергии сродства к электрону).

Наибольшим сродством к электрону обладают p-элементы VII группы. Наименьшее сродство к электрону у атомов с конфигурацией s2 (Be, Mg, Zn) и s2p6 (Ne,Ar) или с наполовину заполненными  p-орбиталями(N,P,As)

Проявления периодического закона в отношении электроотрицательности

 

Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов , составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселенности, то есть от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остается необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.

Периодичность атомной электроотрицательности является важной составной частью периодического закона и легко может быть объяснена, исходя из непреложной, хотя и не совсем однозначной, зависимости значений электроотрицательности от соответствующих значений энергий ионизации и сродства к электрону.

В периодах наблюдается общая тенденция роста электроотрицательности, а в подгруппах— её падение. Наименьшая электроотрицательность у s-элементов I группы, наибольшая— у p-элементов VII группы.

10

Проявления периодического закона в отношении атомных и ионных радиусов

Периодический характер изменения размеров атомов и ионов известен давно. Сложность здесь состоит в том, что из-за волновой природы электронного движения атомы не имеют строго определенных размеров. Так как непосредственное определение абсолютных размеров (радиусов) изолированных атомов невозможно, в данном случае часто используют их эмпирические значения. Их получают из измеренных межъядерных расстояний в кристаллах и свободных молекулах, разбивая каждое межъядерное расстояние на две части и приравнивая одну из них к радиусу первого (из двух связанных соответствующей химической связью) атома, а другую— к радиусу второго атома. При таком разделении учитывают различные факторы, включая природу химической связи, степени окисления двух связанных атомов, характер координации каждого из них и т. д. Таким способом получают так называемые металлические, ковалентные, ионные и ван-дер-ваальсовы радиусы. Ван-дер-ваальсовы радиусы следует рассматривать как радиусы несвязанных атомов; их находят по межъядерным расстояниям в твердых или жидких веществах, где атомы находятся в непосредственной близости друг от друга (например, атомы Ar в твердом аргоне или атомы N из двух соседних молекул N2 в твердом азоте), но не связаны между собой какой-либо химической связью.

Но, очевидно, лучшим описанием эффективных размеров изолированного атома является теоретически рассчитанное положение (расстояние от ядра) главного максимума зарядовой плотности его наружных электронов. Это так называемый орбитальный радиус атома. Периодичность в изменении значений орбитальных атомных радиусов в зависимости от порядкового номера элемента проявляется довольно отчетливо , и основные моменты здесь состоят в наличии очень ярко выраженных максимумов, приходящихся на атомы щелочных металлов, и таких же минимумов, отвечающих благородным газам. Уменьшение значений орбитальных атомных радиусов при переходе от щелочного металла к соответствующему (ближайшему) благородному газу носит, за исключением ряда Li—Ne, немонотонный характер, особенно при появлении между щелочным металлом и благородным газом семейств переходных элементов (металлов) и лантаноидов или актиноидов. В больших периодах в семействах d и f-элементов наблюдается менее резкое уменьшение радиусов, так как заполнение орбиталей электронами происходит в пред- предвнешнем слое. В подгруппах элементов радиусы атомов и однотипных ионов в общем увеличиваются.

Проявления периодического закона в отношении степени окисления

Одним из основных понятий в химии было и остается понятие степени окисления(степень окисления, состояние окисления, окислительное состояние). Несмотря на то что степень окисления представляется во многом формальной и более искусственной относительно других традиционных химических понятий, она до сих пор остается широко распространенной и сохраняет свою значимость для обобщения и более глубокого понимания основных принципов образования химических соединений.

11

Следует подчеркнуть, что степень окисления элемента, будучи формальной характеристикой, не дает представления ни об эффективных зарядах атомов этого элемента в соединении, ни о валентности атомов, хотя степень окисления часто называют формальной валентностью. Многие элементы способны проявлять не одну, а несколько различных степеней окисления. Например, для хлора известны все степени окисления от −1 до +7, хотя четные очень неустойчивы, а для марганца— от +2 до +7. Высшие значения степени окисления изменяются в зависимости от порядкового номера элемента периодически, но эта периодичность имеет сложный характер. В простейшем случае в ряду элементов от щелочного металла до благородного газа высшая степень окисления возрастает от +1 (RbF) до +8 (XeО4). В других случаях высшая степень окисления благородного газа оказывается меньше (Kr+4F4), чем для предшествующего галогена (Br+7О4−). Поэтому на кривой периодической зависимости высшей, степени окисления от порядкового номера элемента максимумы приходятся или на благородный газ, или на предшествующий ему галоген (минимум— всегда на щелочной металл). Исключение составляет ряд Li—Ne, в котором ни для галогена (F), ни для благородного газа (Ne) вообще неизвестны высокие степени окисления, а наибольшим значением высшей степени окисления обладает средний член ряда— азот; поэтому в ряду Li—Ne изменение высшей степени окисления оказывается проходящим через максимум. В общем случае возрастание высшей степени окисления в ряду элементов от щелочного металла до галогена или до благородного газа происходит отнюдь не монотонно, главным образом по причине проявления высоких степеней окисления переходными металлами. Например, возрастание высшей степени окисления в ряду Rb—Xe от +1 до +8 «осложняется» тем, что для молибдена, технеция и рутения известны такие высокие степени окисления, как +6 (MoО3), +7 (Tc2О7), +8 (RuO4).

Проявления периодического закона в отношении энергии атомизации

Энергия атомизации простых веществ является характеристикой, которая во многом определяет их реакционную способность. Зависимость энергии атомизации простых веществ от порядкового номера элемента имеет периодический характер. Основные моменты такой периодической зависимости состоят в следующем: энергия атомизации растет при переходе от щелочного металла (для них эти значения сравнительно невелики и близки 84 кДж/моль) к следующим за ним элементам, достигает максимума, затем убывает, становясь очень небольшой для галогена (63—126 кДж/моль) и, наконец, превращается в нуль в случае примыкающего к галогену благородного газа, который, как известно, при стандартных условиях существует в виде практически не взаимодействующих атомов. Положение максимума энергии атомизации в ряду элементов от щелочного металла до соответствующего (ближайшего) благородного газа зависит от многих факторов, выходящих за рамки настоящего изложения. Так, в ряду Li—Ne наибольшей энергией атомизации характеризуется углерод (718,2 кДж/моль), а в рядах K—Kr и Cs—Rn наибольшими энергиями атомизации обладают переходные металлы: ванадий (516,6 кДж/моль) и вольфрам (844,2 кДж/моль). Неравномерное изменение энергии атомизации в пределах одного ряда элементов от щелочного металла до благородного газа оказывается довольно сложным, особенно если этот ряд включает семейство переходных металлов.

Проявления периодического закона в отношении окислительного потенциала

Одной из очень важных характеристик простого вещества является его окислительный потенциал, отражающий принципиальную способность простого вещества к взаимодействию с водными растворами, а также проявляемые им окислительно-восстановительные свойства. Изменение окислительных потенциалов простых веществ в зависимости от порядкового номера элемента также носит периодический характер. Но при этом следует иметь в виду, что на окислительный потенциал простого вещества оказывают влияние различные факторы, которые иногда нужно рассматривать индивидуально. Поэтому периодичность в изменении окислительных потенциалов следует интерпретировать очень осторожно. Можно обнаружить некоторые определенные последовательности в изменении окислительных потенциалов простых веществ. В частности, в ряду металлов при переходе от щелочного к следующим за ним элементам происходит уменьшение окислительных потенциалов (Na+(aq)и т.д.— гидратированный катион).

12

Это легко объясняется увеличением энергии ионизации атомов с увеличением числа удаляемых валентных электронов. Поэтому на кривой зависимости окислительных потенциалов простых веществ от порядкового номера элемента имеются максимумы, отвечающие щелочным металлам. Но это не единственная причина изменения окислительных потенциалов простых веществ.

 

13

Периодическая система химических элементов(таблица Менделеева)—классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д.И. Менделеевым.

Структура периодической системы

Наиболее распространёнными являются 3 формы таблицы Менделеева: «короткая» (короткопериодная), «длинная» (длиннопериодная) и «сверхдлинная». В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды и актиноиды вынесены и в общей таблицы делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток. Водородиногда помещают в 7-ю («короткая» форма) или 17-ю («длинная» форма) группу таблицы.

Ниже приведён длинный вариант (длиннопериодная форма), утверждённый Международным союзом теоретической и прикладной химии(IUPAC) в качестве основного. Короткая форма таблицы, содержащая восемь групп элементов[6], была официально отменена ИЮПАК в 1989 году. Несмотря на рекомендацию использовать длинную форму, короткая форма продолжает приводиться в большом числе российских справочников и пособий и после этого времени. Из современной иностранной литературы короткая форма исключена полностью, вместо неё используется длинная форма. Такую ситуацию некоторые исследователи связывают в том числе с кажущейся рациональной компактностью короткой формы таблицы, а также с инерцией, стереотипностью мышления и невосприятием современной (международной) информации.

В 1970 году Теодор Сиборк предложил расширенную периодическую таблицу элементов.Нильсом Бором разрабатывалась лестничная (пирамидальная) форма периодической системы. Существует и множество других, редко или вовсе не используемых, но весьма оригинальных, способов графического отображения Периодического закона. Сегодня существуют несколько сотен вариантов таблицы, при этом учёные предлагают всё новые варианты.

Группы

Группа, или семейство,— одна из колонок периодической таблицы. Для групп, как правило, характерны более существенно выраженные периодические тенденции, нежели для периодов или блоков. Современные квантово-механические  теории атомной структуры объясняют групповую общность тем, что элементы в пределах одной группы обыкновенно имеют одинаковые электронные конфигурации на их валентных оболочках. Соответственно, элементы, которые принадлежат к одной и той же группе, традиционно располагают схожими химическими особенностями и демонстрируют явную закономерность в изменении свойств по мере увеличения атомного числа. Впрочем, в некоторых областях таблицы, например— в d-блоке и f-блоке, горизонтальные сходства могут быть столь же важны или даже более заметно выражены, нежели вертикальные.

В соответствии с международной системой именования группам присваиваются номера от 1 до 18 в направлении слева направо— от щелочных металлов к благородным газам. Ранее для их идентификации использовались римские цифры. В американской практике после римских цифр ставилась также литера А (если группа располагалась в s-блоке или p-блоке) или B (если группа находилась в d-блоке). Применявшиеся тогда идентификаторы соответствуют последней цифре современных численных указателей— к примеру, элементам группы 4 соответствовало наименование IVB, а тем, которые ныне известны как группа 14— IVA. Похожая система использовалась и в Европе, за тем исключением, что литера А относилась к группам до десятой, а В— к группам после десятой включительно. Группы 8, 9 и 10, кроме того, часто рассматривались как одна тройная группа с идентификатором VIII. В 1988 году в действие вступила новая система нотации ИЮПАК, и прежние наименования групп вышли из употребления.

14

Периоды

Период— строка периодической таблицы. Хотя для групп, как уже говорилось выше, характерны более существенные тенденции и закономерности, есть также области, где горизонтальное направление более значимо и показательно, нежели вертикальное— например, это касается f-блока, где лантаноиды и актиноиды образуют две важные горизонтальные последовательности элементов.

В рамках периода элементы демонстрируют определенные закономерности во всех трех названных выше аспектах (атомный радиус, энергия ионизации иэлектроотрицательность), а также в энергии сродства к электрону. В направлении слева направо атомный радиус обычно сокращается (в силу того, что у каждого последующего элемента увеличивается количество заряженных частиц, и электроны притягиваются ближе к ядру), и параллельно с ним возрастает энергия ионизации (чем сильнее связь в атоме, тем больше энергии требуется на изъятие электрона). Соответствующим образом увеличивается и электроотрицательность. Что касается энергии сродства к электрону, то металлы в левой части таблицы характеризуются меньшим значением этого показателя, а неметаллы в правой, соответственно, большим— за исключением благородных газов.

Блоки

Ввиду значимости внешней электронной оболочки атома различные области периодической таблицы иногда описываются как блоки, именуемые в соответствии с тем, на какой оболочке находится последний электрон. S-блок включает первые две группы, то есть щелочные и щелочноземельные металлы, а также водород и гелий; p-блок состоит из последних шести групп(с 13 по 18 согласно стандарту именования ИЮПАК, или с IIIA до VIIIA по американской системе) и включает, помимо других элементов, все металлоиды. D-блок— это группы с  3 по 12 (ИЮПАК), они же— с IIIB до IIB по-американски, в которые входят все переходные металлы.F-блок, выносимый обычно за пределы таблицы, состоит из лантаноидов и актиноидов

Значение периодической системы

Периодическая система Д.И.Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.

Прогнозирующая роль периодической системы, показанная ещё самим Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов.Разработанная в XIX в. в рамках науки химии, периодическая таблица явилась готовой систематизацией типов атомов для новых разделов физики, получивших развитие в начале XX в.—физики атома и физики ядра. В ходе исследований атома методами физики было установлено, что порядковый номер элемента в таблице Менделеева, называемый также числом Менделеева, (атомный номер) является мерой электрического заряда  атомного ядра этого элемента, номер горизонтального ряда  в таблице определяет число электронных оболочек атома, а номер вертикального ряда— квантовую структуру верхней оболочки, чему элементы этого ряда и обязаны сходством химических свойств. Появление периодической системы и открытие периодического закона открыло новую, подлинно научную эру в истории химии и ряде смежных наук— взамен разрозненных сведений об элементах и соединениях Д.И.Менделеевым и его последователями создана стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

16



Поиск по файловому архиву
Fast Reply  Оставить отзыв  Add File

Collapse

> Статистика файлового архива

Десятка новых файлов 
24 пользователей за последние 3 минут
Active Users 24 гостей, 0 пользователей, 0 скрытых пользователей
Yandex Bot, Bing Bot
Статистика файлового архива
Board Stats В файловом архиве содержится 217132 файлов в 132 разделах
Файлы в архив загрузили 6 пользователей
Файлы с архива были скачаны 13142541 раз
Последний добавленный файл: прессовая и сушильная части Б.Д.М от пользователя z3rg (добавлен 16.2.2016, 23:01)
RSS Текстовая версия
Рейтинг@Mail.ru

Ренат СУЛЕЙМАНОВ
спортсмен-стрелок, неоднократный чемпион и призер чемпионатов мира и Европы, бронзовый призер Олимпийских игр 1968 года в стрельбе из малокалиберного пистолета, кандидат физико-математических наук, заслуженный мастер спорта.
>>>
Смотреть календарь

Казалось, что новый поход крымских татар на Москву начался успешно: в ночь на 27 июля их авангард сбил русские заставы на перелазах через Оку — Сенькином броде и рядом с устьем реки Протвы. Переправившись через окский рубеж, армия ДЕВЛЕТ-ГИРЕЯ через... >>>
Смотреть календарь

ШТОПОР м. пробочник, простой крючок или завойное шило, для откупорки бутылок.