Роль математики в медицине

Описание:
Математические методы.
Статистическая совокупность.
Дискретная случайная величина и законы ее распределения
Статистическое оценивание
Проверка статистических гипотез.
Доступные действия
Введите защитный код для скачивания файла и нажмите "Скачать файл"
Защитный код
Введите защитный код

Нажмите на изображение для генерации защитного кода

Текст:

Свердловский областной медицинский колледж.

Тема реферата:

«Роль математики в медицине»

                                                                  Выполнил студент: Постников Владислав.

                   Группа: 293 МС.

                                             Преподаватель: Казакова  Т.С.

Екатеринбург.

2012 - 2013 г.

Содержание:

1.   Введение.

2.   Математические методы.

3.   Статистическая совокупность.

4.   Дискретная случайная величина и законы ее распределения.

5.   Статистическое оценивание.

6.   Проверка статистических гипотез.

7.   Регрессионный анализ.

8.   Кластерный анализ.

9.   Факторный анализ.

10.       Математическое моделирование систем.

11.       Компартментальное моделирование.

12.       Метод черного ящика.

13.       Заключение.

1.Введение.

Математика — наука о структурах, порядке и отношениях, которая исторически сложилась на основе операций подсчёта, измерения и описания форм реальных объектов. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Математика — фундаментальная наука, предоставляющая  языковые средства другим наукам. Выдающийся  итальянский физик и астроном, один из основателей точного естествознания, Галилео Галилей (1564-1642) говорил, что "Книга природы написана на языке  математики". Почти через двести лет родоначальник немецкой классической философии Иммануил Кант (1742-1804) утверждал, что "Во всякой науке столько истины, сколько в ней математики". Наконец, ещё через почти сто  пятьдесят лет, практически уже  в наше время, немецкий математик  и логик Давид Гильберт (1862-1943) констатировал: "Математика - основа всего точного естествознания".

2.Математические методы.

Математические методы в медицине — совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью М.м., входят процессы, происходящие на уровне целостного организма, его систем, органов и тканей (в норме и при патологии); заболевания и способы их лечения; приборы и системы медицинской техники; популяционные и организационные аспекты поведения сложных систем в здравоохранении; биологические процессы, происходящие на молекулярном уровне.

Степень математизации научных дисциплин служит объективной характеристикой глубины знаний об изучаемом предмете. Так, многие явления физики, химии, техники описываются М.м. достаточно полно. В результате эти науки достигли высокой степени теоретических обобщений. В биологических науках М.м. пока еще играют подчиненную роль из-за сложности объектов, процессов и явлений, вариабельности их характеристики, наличия индивидуальных особенностей. Систематические попытки использовать М.м. в биомедицинских направлениях начались в 80-х гг. 19 в. Общая идея корреляции, выдвинутая английским психологом и антропологом Гальтоном (F. Galton) и усовершенствованная английским биологом и математиком Пирсоном (К. Pearson), возникла как результат попыток обработки биомедицинских данных. Точно так же из попыток решить биологические проблемы родились известные методы прикладной статистики. До настоящего времени методы математической статистики являются ведущими М.м. для биомедицинских наук. Начиная с 40-х гг. 20 в. математические методы проникают в медицину и биологию через кибернетику иинформатику. Наиболее развиты М.м. в биофизике, биохимии, генетике, физиологии, медицинском приборостроении, создании биотехнических систем.

Математические методы применяют для описания биомедицинских процессов (прежде всего нормального и патологического функционирования организма и его систем, диагностики и лечения). Описание проводят в двух основных направлениях. Для обработки биомедицинских данных используют различные методы математической статистики, выбор одного из которых в каждом конкретном случае основывается на характере распределения анализируемых данных. Эти методы предназначены для выявления закономерностей, свойственных биомедицинским объектам, поиска сходства и различий между отдельными группами объектов, оценки влияния на них разнообразных внешних факторов и т.п. На основе определенной гипотезы о типе распределения изучаемых данных в серии наблюдений и использования соответствующего математического аппарата с той или иной достоверностью устанавливаются свойства биомедицинских объектов, делаются практические выводы, даются рекомендации. Описания свойств объектов, получаемые с помощью методов математической статистики, называют иногда моделями данных. Модели данных не содержат какой-либо информации или гипотез о внутренней структуре реального объекта и опираются только на результаты инструментальных измерений. Статистические методы обработки стали привычным и широко распространенным аппаратом для работников медицины и здравоохранения.

Существует несколько основных понятий, необходимых для эффективного использования методов современной многомерной статистики.

3. Статистическая совокупность.

Понятие, лежащее в основе всех статистических методов. Объекты, с которыми имеют дело в медицине, обладают большой вариабельностью — их характеристики меняются во времени и пространстве в зависимости от многих факторов, а также существенно отличаются друг от друга, Характеристики таких объектов обычно представляют в виде матрицы наблюдений, где столбцы соответствуют различным признакам, а строки — либо разным объектам, либо последовательным во времени наблюдениям за одним и тем же объектом.

Из-за вариабельности измеряемых признаков приходится считать их значения случайными величинами и пользоваться вероятностными (стохастическими) постановками задач: матрица наблюдений является выборкой, или выборочной совокупностью случайных величин из некоторой генеральной совокупности. Сама генеральная совокупность обычно трактуется как множество всех объектов определенного типа или как совокупность всех возможных реализаций какого-либо явления. Основными задачами статистического исследования являются выявление и анализ закономерностей, присущих объектам в выборке, с целью установления возможности и достоверности перенесения сделанных выводов на генеральную совокупность.

Признаки, характеризующие объекты в медицине и здравоохранении, подразделяются на количественные, порядковые и качественные. Для количественных признаков можно указать точную характеристику — число (например, вес, рост, величина АД, данные анализов), Для порядковых признаков (ранговых, если каждой градации ставится в соответствие число — ранг) точная характеристика невозможна, но можно указать степень выраженности соответствующего свойства (хрипы в легких — единичные, множественные; интенсивность кашля — слабая, средняя, сильная, очень сильная). Качественные признаки не поддаются упорядочиванию или ранжированию (цвет глаз — голубой, серый, карий).

Обычно объекты в биологии и медицине описываются множеством признаков одновременно. Набор учитываемых при исследовании признаков называется пространством признаков. Значения всех этих признаков для данного объекта однозначно определяют его положение как точку в пространстве признаков. Если признаки рассматриваются как случайные величины, то точка, описывающая состояние объекта, занимает в пространстве признаков случайное положение.

4. Дискретная случайная величина и законы ее распределения.

Реальное содержание понятия «случайная величина» может быть выражено с помощью такого определения: случайной величиной, связанной с данным опытом, называетсявеличина, которая при каждом осуществлении этого опыта принимает то или иное числовое значение, причем заранее неизвестно, какое именно. Случайные величины будем обозначать буквами 

Определение. Говорят, что задана дискретная случайная величина  , если указано конечное или счетное множество чисел

и каждому из этих чисел  поставлено в соответствие некоторое положительное число  , причем

Числа  называются возможными значениями случайной величины  , а числа - вероятностями этих значений (  ).

Таблица

называется законом распределения дискретной случайной величины  .

Для наглядности закон распределения дискретной случайной величины изображают графически, для чего в прямоугольной системе координат строят точки  и соединяют последовательно отрезками прямых. Получающаяся при этом ломаная линия называется многоугольником распределения случайной величины  .

Если возможными значениями дискретной случайной величины  являются 0, 1, 2, …, n, а соответствующие им вероятности вычисляются по формуле Бернулли:

то говорят, что случайная величина  имеет биномиальный закон распределения:

Пусть заданы натуральные числа m, n, s, причем  Если возможными значениямидискретной случайной величины  являются 0,1,2,…, m, а соответствующие имвероятности выражаются по формуле

то говорят, что случайная величина  имеет гипергеометрический закон распределения.

Другими часто встречающимися примерами законов распределения дискретной случайной величины являются:

геометрический

где  ;

Закон распределения Пуассона:

где

 - положительное постоянное.

Закон распределения Пуассона является предельным для биномиального при  , ,  . Виду этого обстоятельства при больших n и малых p биномиальные вероятности вычисляются приближенно по формуле Пуассона:

где  . 

5. Статистическое оценивание.

Применяют в медицинских исследованиях, когда получаемых данных недостаточно для установления вида функции распределения случайных величин. В этом случае предполагают, что реализуется один из законов распределения, а матрицу наблюдений используют для оценки параметров этого закона.

Статистические оценки могут быть точечными или интервальными. В первом случае оценка дается в виде чисел (как правило, это среднее значение и дисперсия). Во втором случае определяется интервал, в котором исследуемая случайная величина находится с заданной вероятностью. Получаемые оценки должны относиться к генеральной совокупности. Интервальная оценка генерального среднего (математического ожидания) производится на основе распределения Стьюдента (при числе наблюдений не более 50—60) или на основе гипотезы о нормальном распределении (при большем числе наблюдений). Для оценки генеральной дисперсии применяется распределениеc2. Интервал, в котором с заданной вероятностью находится генеральный параметр, называется доверительным интервалом, сама такая вероятность — доверительной вероятностью. В медицинских исследованиях используют три порога доверительной вероятности b: 0,95; 0,99; 0,999. Чем точнее требуется результат, тем большим порогом задается исследователь и тем шире (при прочих равных условиях) получается доверительный интервал. В статистике наряду с понятием доверительной вероятности употребляется термин «уровень значимости». Соответственно применяются три уровня значимости 0,05; 0,01 и 0,001.

6. Проверка статистических гипотез.

Используется чаще всего для определения принадлежности двух имеющихся выборок к одной и той же генеральной совокупности. Подобные задачи возникают, например, при анализе заболеваемости, эффективности лекарственных препаратов и т.п.

Гипотеза о том, что обе выборки не различаются, т.е. принадлежат к одной генеральной совокупности, называется иногда нуль-гипотезой. Эта гипотеза принимается, если ее значимость, получаемая на основании статистических критериев, превышает допустимый порог (р > 0,95). Однако при р  < 0,95 отвергнуть эту гипотезу нельзя: ответ остается неопределенным, и для получения окончательного вывода требуются дополнительные данные. Гипотеза отвергается в том случае, если ее значимость (вероятность правильности) становится меньше заданного стандартного порога.

При проверке статистических гипотез используются параметрические и непараметрические критерии. В первом случае производится сравнение параметров двух выборочных распределений (средних и дисперсий) и делается заключение о равенстве или различии этих параметров в генеральных совокупностях. Гипотеза о равенстве средних значений проверяется по критерию Стьюдента, равенство дисперсий — по критерию Фишера. Описание соответствующих процедур можно найти в любом пособии по математической статистике.

В последние годы большую популярность приобрели непараметрические критерии (Уилкоксона, Колмогорова — Смирнова и др.). Их достоинством является то, что они не содержат ограничений, вытекающих из гипотез о типе распределения случайных величин, а опираются на единый принцип — непрерывности распределений.

Эти критерии применимы и для анализа порядковых данных. Однако по сравнению с параметрическими методами они менее чувствительны к различиям в выборках. Чаще всего непараметрические критерии используются для сравнения эмпирического распределения с теоретическим, в частности при проверке имеющейся статистической совокупности на принадлежность к типу нормальных распределений.

7. Регрессионный анализ.

Регрессией называется зависимость среднего значения одной случайной величины от некоторой другой (или от нескольких случайных величин), а регрессионным анализом — раздел математической статистики, объединяющий прикладные методы исследования регрессионных зависимостей. Регрессионный анализ приобрел большую популярность в связи с распространением ЭВМ.

Если xi и yi — наблюдаемые случайные величины, ei — случайная ошибка с нулевым математическим ожиданием, то регрессия записывается в виде:

yi (xi) + eii = 1, 2,..., N,

где f — функция регрессии.

Если xi — скалярная величина (число), то регрессия называется парной (связывающей пару случайных величин), если xi — вектор, то множественной.

Задачей регрессионного анализа является нахождение «наилучшей» функции f, описывающей зависимость у от х. Оценка производится либо по методу наименьших квадратов, либо по методу максимума правдоподобия (что возможно только при известном распределении величин у).

При использовании регрессионного анализа важно правильно выбрать вид и степень сложности регрессионной модели. Классический путь состоит в учете биологических, физических и других предпосылок, а качество полученной модели оценивается по величине остаточных отклонений. Возможен способ проверки гипотезы линейности по остаточным отклонениям — вычисляется показатель нелинейности и производится проверка достоверности его отличия от нуля по критерию Фишера. Другой подход предложен в 1970-х гг. В.Н. Вапником: при малых выборках сложность регрессионной модели должна быть тем меньше, чем меньше объем выборки, имеющейся в распоряжении исследователя. Разработаны критерии оптимальной сложности регрессии в зависимости от дисперсии остаточных отклонений и объема выборки.

8. Кластерный анализ.

Группа методов статистической обработки, которая включает методы классификации объектов, в т.ч. автоматические, на основе их сходства. Кластерный анализ, как и факторный, «сжимает» информацию. Но если факторный анализ снижает размерность пространства признаков, то кластерный уменьшает число рассматриваемых объектов. Совокупность объектов разбивается на кластеры — группы объектов, обладающие сходными свойствами, поэтому вместо всей группы можно рассматривать один объект, характеризующий ее. Так, ряд административных территорий может быть представлен в виде одного кластера, объединяющего регионы с одинаковой эпидемиологической обстановкой. Кластерный анализ включает методы, которые исходно не принимают во внимание вероятностную природу обрабатываемых данных. При постановке задач кластеризации число кластеров, на которое должно быть разбито исходное множество объектов, может задаваться заранее или выявляться в процессе решения.

Алгоритмы кластерного анализа направлены на получение наилучшего в определенном смысле качества разбиения совокупности объектов на группы.

9. Факторный анализ.

Совокупность методов исследования многомерных признаков за счет снижения их размерности (путем введения так называемых общих факторов, которые непосредственно наблюдаться не могут). В медицине методы факторного анализа применяются для решения двух взаимосвязанных задач: группировки исходной системы признаков на основе их корреляционных связей и сжатия информации за счет построения системы обобщенных индикаторов.

В факторной модели каждый исходный признак представляется в виде комбинации новых показателей (общих факторов), число которых, как правило, устанавливается меньше числа исходных. Такой метод описания удобен, например, для получения обобщенных индексов, характеризующих состояние системы здравоохранения различных регионов или однородных учреждений (исходные показатели — заболеваемость, смертность, количество профосмотров — заменяются набором обобщенных показателей, определяющих ресурсное обеспечение, качество врачебного обслуживания и т.п.).

Недостатком факторного анализа является трудность содержательной интерпретации общих факторов.

10. Математическое моделирование систем.

Является вторым кардинальным направлением применения М.м. в медицине. Основным понятием, используемым при таком анализе, является математическая модель системы.

Под математической моделью понимается описание какого-либо класса объектов или явлений, выполненное с помощью математической символики. Модель представляет собой компактную запись некоторых существенных сведений о моделируемом явлении, накопленных специалистами в конкретной области (физиологии, биологии, медицине). Иногда можно встретить и устаревшее значение термина «математическое моделирование» как процесса анализа модели на ЭВМ. Чтобы избежать путаницы, во втором случае используют понятие «вычислительный эксперимент».

В математическом моделировании выделяют несколько этапов. Основным является формулирование качественных и количественных закономерностей, описывающих основные черты явления. На этом этапе необходимо широкое привлечение знаний и фактов о структуре и характере функционирования рассматриваемой системы, ее свойствах и проявлениях. Этап завершается созданием качественной (описательной) модели объекта, явления или системы. Этот этап не является специфическим для математического моделирования. Словесное (вербальное) описание (часто с использованием цифрового материала) в ряде случаев является конечным результатом физиологических, психологических, медицинских исследований. Математической моделью описание объекта становится только после того, как оно на последующих этапах переводится на язык математических терминов. 

11. Компартментальное моделирование.

Распространено в медицине и биологии. Согласно определению американского фармаколога и биохимика Шеппарда (С.W. Sheppard, 1948), компартмент — это некоторое количество вещества, выделяемое в биологической системе и обладающее свойством единства, поэтому в процессах транспорта и химических преобразований его можно рассматривать как целое. Например, в качестве особых компартментов рассматривают весь кислород в легких, всю углекислоту в венозной крови, количество введенного препарата в межклеточной жидкости, запас гликогена в печени и т.п. Модели, в которых исследуемая система представляется в виде совокупности компартментов, потоков вещества между ними, а также источников и стоков всех веществ, называются компартментальными.

В компартментальной модели каждому компартменту соответствует своя переменная состояния — количественная характеристика компартмента (концентрация, масса вещества, парциальное давление газа и т.п.). Вещество попадает в систему через источники — естественные (физиологические процессы внешнего дыхания, например источник кислорода) или искусственные (капельница или инъекции); удаляются через стоки — естественные (например, почка) или искусственные (например, аппаратура гемосорбции). Темпы (скорости) потоков вещества из одного компартмента в другой часто предполагаются пропорциональными концентрациям или количествам вещества в компартменте. 

12. Метод черного ящика.

Первым примером упрощенного описания живых систем в медицине и биологии была модель черного ящика, когда все выводы делались только на основе изучения реакций объекта (выходов) на те или иные внешние воздействия (входы) без учета внутренней структуры объекта. Соответствующее описание объекта в понятиях вход — выход оказалось неудовлетворительным, т.к. оно не учитывало изменения его выходных реакций на одно и то же воздействие из-за влияния внутренних изменений в объекте. Поэтому метод черного ящика уступил место методам пространства состояний, в которых описание дается в понятиях вход — состояние — выход. Наиболее естественным описанием динамической системы в рамках теории пространства состояний является компартментальное моделирование, где каждому компартменту соответствует одна переменная состояния. В то же время соотношения вход — выход по-прежнему широко используются для описания существенных свойств биологических объектов.

Выбор тех или иных М.м. при описании и исследовании биологических и медицинских объектов зависит как от индивидуальных знаний специалиста, так и от особенностей решаемых задач. Например, статистические методы дают полное решение задачи во всех случаях, когда исследователя не интересует внутренняя сущность процессов, лежащих в основе изучаемых явлений. Когда знания о структуре системы, механизмах ее функционирования, протекающих в ней процессах и возникающих явлениях могут существенно повлиять на решения исследователя, прибегают к методам математического моделирования систем.

13. Заключение.

Математика имеет почти такое  же значение для остальных  наук, как и логика. Роль математики  заключается в построении и  анализе количественных математических  моделей, а также в исследовании  структур, подчинённых формальным  законам. Обработка и анализ  экспериментальных результатов,  построение гипотез и применение  научных теорий в практической  деятельности требует использования  математики. Математика  всем нужна. Наборы чисел, как ноты, могут быть мертвыми значками, а  могут звучать музыкой, симфоническим  оркестром... И медикам тоже. Хотя бы для того, чтобы грамотно прочитать  обычную кардиограмму. Без знания азов математики нельзя быть докой  в компьютерной технике, использовать возможности компьютерной томографии... Ведь современная медицина не может  обходиться без сложнейшей техники.

    Когда-то математики пришли в  медицину с наивным представлением, что они легко вникнут в  наши симптомы и помогут улучшить  диагностику. С появлением первых  ЭВМ будущее представлялось просто  замечательным: заложил в компьютер  всю информацию о больном и  получил такое, что врачу и  не снилось. Казалось, что машина  может все. Но поле математики  в медицине предстало огромным  и невероятно сложным, а ее  участие в диагностике - вовсе  не простым перебором и компоновкой  многих сотен лабораторных и  инструментальных показателей.


Информация о файле
Название файла Роль математики в медицине от пользователя z3rg
Дата добавления 9.2.2013, 19:30
Дата обновления 9.2.2013, 19:30
Тип файла Тип файла (zip - application/zip)
Скриншот Не доступно
Статистика
Размер файла 36.13 килобайт (Примерное время скачивания)
Просмотров 33972
Скачиваний 467
Оценить файл